BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 9825399)

  • 1. The cellular clearance theory does not explain the post-dialytic small molecule rebound.
    Heaf JG; Jensen SB; Jensen K; Ali S; von Jessen F
    Scand J Urol Nephrol; 1998 Sep; 32(5):350-5. PubMed ID: 9825399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normalised cellular clearance of creatinine, urea and phosphate.
    Heaf J; Jensen S
    Nephron; 1994; 67(2):197-202. PubMed ID: 8072609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosing intermittent haemodialysis in the intensive care unit patient with acute renal failure--estimation of urea removal and evidence for the regional blood flow model.
    Kanagasundaram NS; Greene T; Larive AB; Daugirdas JT; Depner TA; Paganini EP;
    Nephrol Dial Transplant; 2008 Jul; 23(7):2286-98. PubMed ID: 18272777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate end dialysis value: a misleading parameter of hemodialysis efficiency. French Society for Pediatric Nephrology.
    Fischbach M; Boudailliez B; Foulard M
    Pediatr Nephrol; 1997 Apr; 11(2):193-5. PubMed ID: 9090662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodialysis urea rebound: the effect of increasing dialysis efficiency.
    Spiegel DM; Baker PL; Babcock S; Contiguglia R; Klein M
    Am J Kidney Dis; 1995 Jan; 25(1):26-9. PubMed ID: 7810527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urea, creatinine and phosphate kinetic modeling during dialysis: application to pediatric hemodialysis.
    Maasrani M; Jaffrin MY; Fischbach M; Boudailliez B
    Int J Artif Organs; 1995 Mar; 18(3):122-9. PubMed ID: 7499014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superior dialytic clearance of beta(2)-microglobulin and p-cresol by high-flux hemodialysis as compared to peritoneal dialysis.
    Evenepoel P; Bammens B; Verbeke K; Vanrenterghem Y
    Kidney Int; 2006 Aug; 70(4):794-9. PubMed ID: 16820785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rebound kinetics of beta2-microglobulin after hemodialysis.
    Leypoldt JK; Cheung AK; Deeter RB
    Kidney Int; 1999 Oct; 56(4):1571-7. PubMed ID: 10504510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of post-dialysis urea rebound using regional flow model.
    Yashiro M; Watanabe H; Muso E
    Clin Exp Nephrol; 2004 Jun; 8(2):139-45. PubMed ID: 15235931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residual renal function and post dialysis urea rebound.
    Carofei O; Taratufolo A; Atti S; Fringuello F; Alaimo M
    EDTNA ERCA J; 1999; 25(2):7-8. PubMed ID: 10531872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of intradialytic exercise on hemodialysis adequacy: A systematic review.
    Kirkman DL; Scott M; Kidd J; Macdonald JH
    Semin Dial; 2019 Jul; 32(4):368-378. PubMed ID: 30968465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method of post-dialysis blood urea sampling: the 'stop dialysate flow' method.
    Geddes CC; Traynor J; Walbaum D; Fox JG; Mactier RA
    Nephrol Dial Transplant; 2000 Apr; 15(4):517-23. PubMed ID: 10727547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodiafiltration--a new treatment option for hyperphosphatemia in hemodialysis patients.
    Zehnder C; Gutzwiller JP; Renggli K
    Clin Nephrol; 1999 Sep; 52(3):152-9. PubMed ID: 10499310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of urea nitrogen and creatinine kinetics in hemodialysis: comparison of a variable-volume two-compartment model with a regional blood flow model and investigation of an appropriate solute kinetics model for clinical application.
    Yamada T; Hiraga S; Akiba T; Marumo F
    Blood Purif; 2000; 18(1):18-29. PubMed ID: 10686439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors that affect postdialysis rebound in serum urea concentration, including the rate of dialysis: results from the HEMO Study.
    Daugirdas JT; Greene T; Depner TA; Leypoldt J; Gotch F; Schulman G; Star R;
    J Am Soc Nephrol; 2004 Jan; 15(1):194-203. PubMed ID: 14694173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical analysis of urea rebound in long-term hemodialysis patients.
    Ookawara S; Suzuki M; Saitou M; Tabei K
    Ther Apher Dial; 2005 Apr; 9(2):167-72. PubMed ID: 15828930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing residual renal function and efficiency of hemodialysis--an application for urographic contrast media.
    Sterner G; Frennby B; Månsson S; Ohlsson A; Prütz KG; Almén T
    Nephron; 2000 Aug; 85(4):324-33. PubMed ID: 10940743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creatinine generation from kinetic modeling with or without postdialysis serum creatinine measurement: results from the HEMO study.
    Daugirdas JT; Depner TA
    Nephrol Dial Transplant; 2017 Nov; 32(11):1926-1933. PubMed ID: 28379486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cystatin C reduction ratio depends on normalized blood liters processed and fluid removal during hemodialysis.
    Huang SH; Filler G; Yasin A; Lindsay RM
    Clin J Am Soc Nephrol; 2011 Feb; 6(2):319-25. PubMed ID: 21115625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate, urea and creatinine clearances: haemodialysis adequacy assessed by weekly monitoring.
    Debowska M; Wojcik-Zaluska A; Ksiazek A; Zaluska W; Waniewski J
    Nephrol Dial Transplant; 2015 Jan; 30(1):129-36. PubMed ID: 25140013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.