These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 9826268)

  • 21. Interaction between Escherichia coli RNase P RNA and the discriminator base results in slow product release.
    Tallsjö A; Kufel J; Kirsebom LA
    RNA; 1996 Apr; 2(4):299-307. PubMed ID: 8634910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation and characterization of circular Bacillus subtilis RNase P RNA; activation by RNase P protein.
    Puttaraju M; Beebe JA; Niranjanakumari S; Been MD; Fierke CA
    Nucleic Acids Symp Ser; 1995; (33):92-4. PubMed ID: 8643411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of C5 protein on Escherichia coli RNase P catalysis with a precursor tRNA(Phe) bearing a single mismatch in the acceptor stem.
    Park BH; Lee JH; Kim M; Lee Y
    Biochem Biophys Res Commun; 2000 Feb; 268(1):136-40. PubMed ID: 10652227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of matrices of paired substitutions in mid-acceptor stem on Drosophila tRNA(His) structure and end-processing.
    Mohan A; Levinger L
    J Mol Biol; 2000 Nov; 303(4):605-16. PubMed ID: 11054295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recognition of a pre-tRNA substrate by the Bacillus subtilis RNase P holoenzyme.
    Loria A; Niranjanakumari S; Fierke CA; Pan T
    Biochemistry; 1998 Nov; 37(44):15466-73. PubMed ID: 9799509
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppression of HIV-1 replication by a combination of endonucleolytic ribozymes (RNase P and tRNnase ZL).
    Ikeda M; Habu Y; Miyano-Kurosaki N; Takaku H
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(4-6):427-37. PubMed ID: 16838836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Construction of new ribozymes requiring short regulator oligonucleotides as a cofactor.
    Komatsu Y; Yamashita S; Kazama N; Nobuoka K; Ohtsuka E
    J Mol Biol; 2000 Jun; 299(5):1231-43. PubMed ID: 10873448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction of functional N-methyl-D-aspartate receptors in neurons by RNase P-mediated cleavage of the NR1 mRNA.
    Yen L; Gonzalez-Zulueta M; Feldman A; Yuan Y; Fryer H; Dawson T; Dawson V; Kalb RG
    J Neurochem; 2001 Mar; 76(5):1386-94. PubMed ID: 11238723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutational analysis of the joining regions flanking helix P18 in E. coli RNase P RNA.
    Hardt WD; Hartmann RK
    J Mol Biol; 1996 Jun; 259(3):422-33. PubMed ID: 8676378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rp-deoxy-phosphorothioate modification interference experiments identify 2'-OH groups in RNase P RNA that are crucial to tRNA binding.
    Hardt WD; Erdmann VA; Hartmann RK
    RNA; 1996 Dec; 2(12):1189-98. PubMed ID: 8972769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal ion cooperativity in ribozyme cleavage of RNA.
    Brännvall M; Kirsebom LA
    Proc Natl Acad Sci U S A; 2001 Nov; 98(23):12943-7. PubMed ID: 11606743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of gene expression by RNase P.
    Lundblad EW; Altman S
    N Biotechnol; 2010 Jul; 27(3):212-21. PubMed ID: 20211282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNase P and 3'-tRNase processing matrices in the analysis of Drosophila transfer RNA D/T loop tertiary contacts.
    Levinger L; Greene V; Birk A; Bourne R; Kolla S; Whyte S
    Nucleic Acids Symp Ser; 1995; (33):82-4. PubMed ID: 8643408
    [No Abstract]   [Full Text] [Related]  

  • 34. Differences in the interaction of Escherichia coli RNase P RNA with tRNAs containing a short or a long extra arm.
    Gaur RK; Hanne A; Conrad F; Kahle D; Krupp G
    RNA; 1996 Jul; 2(7):674-81. PubMed ID: 8756410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of gene expression in human cells using RNase P-derived ribozymes and external guide sequences.
    Kim K; Liu F
    Biochim Biophys Acta; 2007; 1769(11-12):603-12. PubMed ID: 17976837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effective inhibition of HIV-1 replication in cultured cells by external guide sequences and ribonuclease.
    Endo Y; Miyano-Kurosaki N; Kitano M; Habu Y; Takaku H
    Nucleic Acids Res Suppl; 2001; (1):213-4. PubMed ID: 12836340
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of human cytomegalovirus major capsid protein expression and replication by ribonuclease P-associated external guide sequences.
    Deng Q; Liu Y; Li X; Yan B; Sun X; Tang W; Trang P; Yang Z; Gong H; Wang Y; Lu J; Chen J; Xia C; Xing X; Lu S; Liu F
    RNA; 2019 May; 25(5):645-655. PubMed ID: 30803999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of viral gene expression by human ribonuclease P.
    Kawa D; Wang J; Yuan Y; Liu F
    RNA; 1998 Nov; 4(11):1397-406. PubMed ID: 9814760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of cell division induced by external guide sequences (EGS Technology) targeting ftsZ.
    Sala CD; Soler-Bistué AJ; Korprapun L; Zorreguieta A; Tolmasky ME
    PLoS One; 2012; 7(10):e47690. PubMed ID: 23110089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards a new concept of gene inactivation: specific RNA cleavage by endogenous ribonuclease P.
    Hartmann RK; Krupp G; Hardt WD
    Biotechnol Annu Rev; 1995; 1():215-65. PubMed ID: 9704090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.