These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 98266)

  • 1. Mammalian repetitive DNA and the subunit structure of chromatin.
    Musich PR; Brown FL; Maio JJ
    Cold Spring Harb Symp Quant Biol; 1978; 42 Pt 2():1147-60. PubMed ID: 98266
    [No Abstract]   [Full Text] [Related]  

  • 2. Molecular arrangement and evolution of heterochromatic DNA.
    Brutlag DL
    Annu Rev Genet; 1980; 14():121-44. PubMed ID: 6260016
    [No Abstract]   [Full Text] [Related]  

  • 3. Subunit structure of chromatin and the organization of eukaryotic highly repetitive DNA: recurrent periodicities and models for the evolutionary origins of repetitive DNA.
    Maio JJ; Brown FL; Musich PR
    J Mol Biol; 1977 Dec; 117(3):637-55. PubMed ID: 416219
    [No Abstract]   [Full Text] [Related]  

  • 4. Fine structure and evolution of DNA in heterochromatin.
    Peacock WJ; Lohe AR; Gerlach WL; Dunsmuir P; Dennis ES; Appels R
    Cold Spring Harb Symp Quant Biol; 1978; 42 Pt 2():1121-35. PubMed ID: 98264
    [No Abstract]   [Full Text] [Related]  

  • 5. Structure and properties of a highly repetitive DNA sequence in sheep.
    Novak U
    Nucleic Acids Res; 1984 Mar; 12(5):2343-50. PubMed ID: 6324115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional aspects of satellite DNA and heterochromatin.
    John B; Miklos GL
    Int Rev Cytol; 1979; 58():1-114. PubMed ID: 391760
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on the organization of the alpha-satellite DNA from African green monkey cells using restriction nucleases and molecular cloning.
    Graf H; Fittler F; Zachau HG
    Gene; 1979 Feb; 5(2):93-110. PubMed ID: 109356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subunit structure of chromatin and the organization of eukaryotic highly repetitive DNA: indications of a phase relation between restriction sites and chromatin subunits in African green monkey and calf nuclei.
    Musich PR; Maio JJ; Brown FL
    J Mol Biol; 1977 Dec; 117(3):657-77. PubMed ID: 416220
    [No Abstract]   [Full Text] [Related]  

  • 9. The arrangement and evolution of highly repeated (satellite) DNA sequences with special reference to Drosophila.
    Appels R; Peacock WJ
    Int Rev Cytol Suppl; 1978; Suppl 8():69-126. PubMed ID: 114503
    [No Abstract]   [Full Text] [Related]  

  • 10. On the mechanism of amplification of satellite II DNA sequences of the domestic goat Capra hircus.
    Buckland RA; Elder JK
    J Mol Biol; 1985 Nov; 186(1):13-23. PubMed ID: 3001315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterochromatin, satellite DNA, and cell function. Structural DNA of eucaryotes may support and protect genes and aid in speciation.
    Yunis JJ; Yasmineh WG
    Science; 1971 Dec; 174(4015):1200-9. PubMed ID: 4943851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA sequence organization in Drosophila heterochromatin.
    Brutlag D; Carlson M; Fry K; Hsieh TS
    Cold Spring Harb Symp Quant Biol; 1978; 42 Pt 2():1137-46. PubMed ID: 98265
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparative structure and evolution of goat and sheep satellite I DNAs.
    Buckland RA
    Nucleic Acids Res; 1983 Mar; 11(5):1349-60. PubMed ID: 6298742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian repetitive DNA sequences in a stable Robertsonian system. Characterization, in situ hybridizations, and cross-species hybridizations of repetitive DNAs in calf, sheep, and goat chromosomes.
    Kurnit DM; Brown FL; Maio JJ
    Cytogenet Cell Genet; 1978; 21(3):145-67. PubMed ID: 657846
    [No Abstract]   [Full Text] [Related]  

  • 15. Chromatin diminution in Ascaris suum: nucleotide sequence of the eliminated satellite DNA.
    Streeck RE; Moritz KB; Beer K
    Nucleic Acids Res; 1982 Jun; 10(11):3495-502. PubMed ID: 6285304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of 1.71 lb gm/cm(3) bovine satellite DNA: evolutionary relationship to satellite I.
    Taparowsky EJ; Gerbi SA
    Nucleic Acids Res; 1982 Sep; 10(18):5503-15. PubMed ID: 6292843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The AluI-induced bands in great apes and man: implication for heterochromatin characterization and satellite DNA distribution.
    Ferrucci L; Romano E; de Stefano GF
    Cytogenet Cell Genet; 1987; 44(1):53-7. PubMed ID: 3028715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2006 Nov; 383():81-92. PubMed ID: 16956734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restriction nucleases as probes of chromatin structure.
    Pfeiffer W; Horz W; Igo-Kemenes T; Zachau HG
    Nature; 1975 Dec; 258(5534):450-2. PubMed ID: 1196380
    [No Abstract]   [Full Text] [Related]  

  • 20. Sequence and evolution of related bovine and caprine satellite DNAs. Identification of a short DNA sequence potentially involved in satellite DNA amplification.
    Buckland RA
    J Mol Biol; 1985 Nov; 186(1):25-30. PubMed ID: 4078901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.