These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 9826601)

  • 21. Substrate specificity and affinity of a protein modulated by bound water molecules.
    Quiocho FA; Wilson DK; Vyas NK
    Nature; 1989 Aug; 340(6232):404-7. PubMed ID: 2818726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substrate affinities for membrane transport proteins determined by 13C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy.
    Patching SG; Brough AR; Herbert RB; Rajakarier JA; Henderson PJ; Middleton DA
    J Am Chem Soc; 2004 Mar; 126(10):3072-80. PubMed ID: 15012136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of YihS in complex with D-mannose: structural annotation of Escherichia coli and Salmonella enterica yihS-encoded proteins to an aldose-ketose isomerase.
    Itoh T; Mikami B; Hashimoto W; Murata K
    J Mol Biol; 2008 Apr; 377(5):1443-59. PubMed ID: 18328504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A route for fructose utilization by Escherichia coli involving the fucose regulon.
    Kornberg H; Lourenco C
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19496-9. PubMed ID: 17159144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteins with similar architecture exhibit similar large-scale dynamic behavior.
    Keskin O; Jernigan RL; Bahar I
    Biophys J; 2000 Apr; 78(4):2093-106. PubMed ID: 10733987
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the catalytic mechanism of GDP-4-keto-6-deoxy-d-mannose Epimerase/Reductase by kinetic and crystallographic characterization of site-specific mutants.
    Rosano C; Bisso A; Izzo G; Tonetti M; Sturla L; De Flora A; Bolognesi M
    J Mol Biol; 2000 Oct; 303(1):77-91. PubMed ID: 11021971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low 13C-background for NMR-based studies of ligand binding using 13C-depleted glucose as carbon source for microbial growth: 13C-labeled glucose and 13C-forskolin binding to the galactose-H+ symport protein GalP in Escherichia coli.
    Patching SG; Herbert RB; O'Reilly J; Brough AR; Henderson PJ
    J Am Chem Soc; 2004 Jan; 126(1):86-7. PubMed ID: 14709072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anomer-Specific Recognition and Dynamics in a Fucose-Binding Lectin.
    Antonik PM; Volkov AN; Broder UN; Re DL; van Nuland NA; Crowley PB
    Biochemistry; 2016 Mar; 55(8):1195-203. PubMed ID: 26845253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relative substrate affinities of wild-type and mutant forms of the Escherichia coli sugar transporter GalP determined by solid-state NMR.
    Patching SG; Psakis G; Baldwin SA; Baldwin J; Henderson PJ; Middleton DA
    Mol Membr Biol; 2008 Sep; 25(6-7):474-84. PubMed ID: 18798051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. D-Xylose-binding protein (periplasmic) from Escherichia coli.
    Dahms AS; Huisman W; Neslund G; Ahlem C
    Methods Enzymol; 1982; 90 Pt E():473-6. PubMed ID: 6759867
    [No Abstract]   [Full Text] [Related]  

  • 31. 19F NMR studies of the D-galactose chemosensory receptor. 1. Sugar binding yields a global structural change.
    Luck LA; Falke JJ
    Biochemistry; 1991 Apr; 30(17):4248-56. PubMed ID: 1850619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energetics by NMR: site-specific binding in a positively cooperative system.
    Tochtrop GP; Richter K; Tang C; Toner JJ; Covey DF; Cistola DP
    Proc Natl Acad Sci U S A; 2002 Feb; 99(4):1847-52. PubMed ID: 11854486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The interaction of L-arabinose and D-fucose with AraC protein.
    Wilcox G
    J Biol Chem; 1974 Nov; 249(21):6892-4. PubMed ID: 4608387
    [No Abstract]   [Full Text] [Related]  

  • 34. Global changes in local protein dynamics reduce the entropic cost of carbohydrate binding in the arabinose-binding protein.
    MacRaild CA; Daranas AH; Bronowska A; Homans SW
    J Mol Biol; 2007 May; 368(3):822-32. PubMed ID: 17368482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum mechanical model assembly calculations of energetics of binding of ligands to protein receptors.
    Peräkylä M; Pakkanen TA
    Biochem Soc Trans; 1996 Feb; 24(1):143S. PubMed ID: 8674635
    [No Abstract]   [Full Text] [Related]  

  • 36. Biphasic saturations of binding proteins can be the result of a competitive inhibition of substrate fixation.
    Gaudin C; Marty B; Ragot M; Sari JC; Belaich JP
    Biochimie; 1978; 60(4):353-9. PubMed ID: 356896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of perdeuterated fucose from glyco-engineered bacteria.
    Gajdos L; Forsyth VT; Blakeley MP; Haertlein M; Imberty A; Samain E; Devos JM
    Glycobiology; 2021 Feb; 31(2):151-158. PubMed ID: 32601663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of substrate binding forces in exchange-only transport systems: I. Transition-state theory.
    Krupka RM
    J Membr Biol; 1989 Jul; 109(2):151-8. PubMed ID: 2769738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PMR studies of the substrate induced conformational change of glutamine binding protein from E. coli.
    Kreishman GP; Robertson DE; Ho C
    Biochem Biophys Res Commun; 1973 Jul; 53(1):18-23. PubMed ID: 4582370
    [No Abstract]   [Full Text] [Related]  

  • 40. NMR studies of ion binding in biological systems.
    Forsén S; Drakenberg T; Wennerström H
    Q Rev Biophys; 1987 Feb; 19(1-2):83-114. PubMed ID: 3628710
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.