BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 9826611)

  • 1. Experimental and Monte Carlo simulation studies of the thermodynamics of polyethyleneglycol chains grafted to lipid bilayers.
    Rex S; Zuckermann MJ; Lafleur M; Silvius JR
    Biophys J; 1998 Dec; 75(6):2900-14. PubMed ID: 9826611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and mesoscopic properties of hydrophilic polymer-grafted phospholipids mixed with phosphatidylcholine in aqueous dispersion: interaction of dipalmitoyl N-poly(ethylene glycol)phosphatidylethanolamine with dipalmitoylphosphatidylcholine studied by spectrophotometry and spin-label electron spin resonance.
    Belsito S; Bartucci R; Montesano G; Marsh D; Sportelli L
    Biophys J; 2000 Mar; 78(3):1420-30. PubMed ID: 10692327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Langmuir films of dipalmitoyl phosphatidylethanolamine grafted poly(ethylene glycol). In-situ evidence of surface aggregation at the air-water interface.
    Clop EM; Corvalán NA; Perillo MA
    Colloids Surf B Biointerfaces; 2016 Dec; 148():640-649. PubMed ID: 27697738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of Plasma Proteins onto PEGylated Lipid Bilayers: The Effect of PEG Size and Grafting Density.
    Lee H; Larson RG
    Biomacromolecules; 2016 May; 17(5):1757-65. PubMed ID: 27046506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(ethylene glycol)-lipid conjugates promote bilayer formation in mixtures of non-bilayer-forming lipids.
    Holland JW; Cullis PR; Madden TD
    Biochemistry; 1996 Feb; 35(8):2610-7. PubMed ID: 8611564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confinement free energy of surfaces bearing end-grafted polymers in the mushroom regime and local measurement of the polymer density.
    Li F; Pincet F
    Langmuir; 2007 Dec; 23(25):12541-8. PubMed ID: 17988162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative experimental assessment of macromolecular crowding effects at membrane surfaces.
    Leventis R; Silvius JR
    Biophys J; 2010 Oct; 99(7):2125-33. PubMed ID: 20923646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for superlattice arrangements in fluid phosphatidylcholine/phosphatidylethanolamine bilayers.
    Cheng KH; Ruonala M; Virtanen J; Somerharju P
    Biophys J; 1997 Oct; 73(4):1967-76. PubMed ID: 9336192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructure of the interface modified by grafted polymers: a Monte Carlo simulation.
    Vao-soongnern V
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3977-80. PubMed ID: 17256366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the long-chain/short-chain amphiphile ratio on lateral diffusion of PEG-lipid in magnetically aligned lipid bilayers as measured via pulsed-field-gradient NMR.
    Soong R; Macdonald PM
    Biophys J; 2005 Sep; 89(3):1850-60. PubMed ID: 15994903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of monomer sequences on conformations of copolymers grafted on spherical nanoparticles: a Monte Carlo simulation study.
    Seifpour A; Spicer P; Nair N; Jayaraman A
    J Chem Phys; 2010 Apr; 132(16):164901. PubMed ID: 20441304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid membrane expansion and micelle formation by polymer-grafted lipids: scaling with polymer length studied by spin-label electron spin resonance.
    Montesano G; Bartucci R; Belsito S; Marsh D; Sportelli L
    Biophys J; 2001 Mar; 80(3):1372-83. PubMed ID: 11222298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avidin-biotin interactions at vesicle surfaces: adsorption and binding, cross-bridge formation, and lateral interactions.
    Noppl-Simson DA; Needham D
    Biophys J; 1996 Mar; 70(3):1391-401. PubMed ID: 8785294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exchange of monooleoylphosphatidylcholine as monomer and micelle with membranes containing poly(ethylene glycol)-lipid.
    Needham D; Stoicheva N; Zhelev DV
    Biophys J; 1997 Nov; 73(5):2615-29. PubMed ID: 9370456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.
    Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE
    Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(ethylene glycol)--lipid conjugates regulate the calcium-induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine.
    Holland JW; Hui C; Cullis PR; Madden TD
    Biochemistry; 1996 Feb; 35(8):2618-24. PubMed ID: 8611565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of functionalized polymer layers for specific targeting of mobile receptors on cell surfaces.
    Hagy MC; Wang S; Dormidontova EE
    Langmuir; 2008 Nov; 24(22):13037-47. PubMed ID: 18834163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmotic properties of poly(ethylene glycols): quantitative features of brush and bulk scaling laws.
    Hansen PL; Cohen JA; Podgornik R; Parsegian VA
    Biophys J; 2003 Jan; 84(1):350-5. PubMed ID: 12524288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEG-grafted phospholipids in vesicles: Effect of PEG chain length and concentration on mechanical properties.
    Mahendra A; James HP; Jadhav S
    Chem Phys Lipids; 2019 Jan; 218():47-56. PubMed ID: 30521788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.