These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Song F; Chen P; Sun D; Wang M; Dong L; Liang D; Xu RM; Zhu P; Li G Science; 2014 Apr; 344(6182):376-80. PubMed ID: 24763583 [TBL] [Abstract][Full Text] [Related]
6. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array. Woods DC; Rodríguez-Ropero F; Wereszczynski J J Mol Biol; 2021 May; 433(10):166902. PubMed ID: 33667509 [TBL] [Abstract][Full Text] [Related]
7. Mobile histone tails in nucleosomes. Assignments of mobile segments and investigations of their role in chromatin folding. Smith RM; Rill RL J Biol Chem; 1989 Jun; 264(18):10574-81. PubMed ID: 2732239 [TBL] [Abstract][Full Text] [Related]
9. A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments. Arya G; Schlick T J Phys Chem A; 2009 Apr; 113(16):4045-59. PubMed ID: 19298048 [TBL] [Abstract][Full Text] [Related]
10. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. Grigoryev SA; Arya G; Correll S; Woodcock CL; Schlick T Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13317-22. PubMed ID: 19651606 [TBL] [Abstract][Full Text] [Related]
11. Regulation of chromatin folding by conformational variations of nucleosome linker DNA. Buckwalter JM; Norouzi D; Harutyunyan A; Zhurkin VB; Grigoryev SA Nucleic Acids Res; 2017 Sep; 45(16):9372-9387. PubMed ID: 28934465 [TBL] [Abstract][Full Text] [Related]
12. A method for the in vitro reconstitution of a defined "30 nm" chromatin fibre containing stoichiometric amounts of the linker histone. Huynh VA; Robinson PJ; Rhodes D J Mol Biol; 2005 Feb; 345(5):957-68. PubMed ID: 15644197 [TBL] [Abstract][Full Text] [Related]
13. The higher order structure of chromatin and histone H1. Thomas JO J Cell Sci Suppl; 1984; 1():1-20. PubMed ID: 6397467 [TBL] [Abstract][Full Text] [Related]
14. Nucleosome structural transition during chromatin unfolding is caused by conformational changes in nucleosomal DNA. Gavin IM; Usachenko SI; Bavykin SG J Biol Chem; 1998 Jan; 273(4):2429-34. PubMed ID: 9442093 [TBL] [Abstract][Full Text] [Related]
15. Localization of linker histone in chromatosomes by cryo-atomic force microscopy. Sheng S; Czajkowsky DM; Shao Z Biophys J; 2006 Aug; 91(4):L35-7. PubMed ID: 16782797 [TBL] [Abstract][Full Text] [Related]
16. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Routh A; Sandin S; Rhodes D Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8872-7. PubMed ID: 18583476 [TBL] [Abstract][Full Text] [Related]
17. Atomic force microscopy sees nucleosome positioning and histone H1-induced compaction in reconstituted chromatin. Sato MH; Ura K; Hohmura KI; Tokumasu F; Yoshimura SH; Hanaoka F; Takeyasu K FEBS Lett; 1999 Jun; 452(3):267-71. PubMed ID: 10386604 [TBL] [Abstract][Full Text] [Related]
18. Chromatin modification by PSC occurs at one PSC per nucleosome and does not require the acidic patch of histone H2A. Lo SM; McElroy KA; Francis NJ PLoS One; 2012; 7(10):e47162. PubMed ID: 23071745 [TBL] [Abstract][Full Text] [Related]
19. Nucleosome spacing periodically modulates nucleosome chain folding and DNA topology in circular nucleosome arrays. Bass MV; Nikitina T; Norouzi D; Zhurkin VB; Grigoryev SA J Biol Chem; 2019 Mar; 294(11):4233-4246. PubMed ID: 30630950 [TBL] [Abstract][Full Text] [Related]