BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 9826757)

  • 81. Assembly of a polyadenylation-specific 25S ribonucleoprotein complex in vitro.
    Stefano JE; Adams DE
    Mol Cell Biol; 1988 May; 8(5):2052-62. PubMed ID: 2898729
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A noncanonical poly(A) signal, UAUAAA, and flanking elements in Epstein-Barr virus DNA polymerase mRNA function in cleavage and polyadenylation assays.
    Silver Key SC; Pagano JS
    Virology; 1997 Jul; 234(1):147-59. PubMed ID: 9234956
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Heterogeneous nuclear ribonucleoprotein C binds exclusively to the functionally important UUUUU-motifs in the human papillomavirus type-1 AU-rich inhibitory element.
    Sokolowski M; Schwartz S
    Virus Res; 2001 Mar; 73(2):163-75. PubMed ID: 11172920
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A 57-nucleotide upstream early polyadenylation element in human papillomavirus type 16 interacts with hFip1, CstF-64, hnRNP C1/C2, and polypyrimidine tract binding protein.
    Zhao X; Oberg D; Rush M; Fay J; Lambkin H; Schwartz S
    J Virol; 2005 Apr; 79(7):4270-88. PubMed ID: 15767428
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein.
    Takagaki Y; Manley JL
    Nature; 1994 Dec; 372(6505):471-4. PubMed ID: 7984242
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The Drosophila poly(A)-binding protein II is ubiquitous throughout Drosophila development and has the same function in mRNA polyadenylation as its bovine homolog in vitro.
    Benoit B; Nemeth A; Aulner N; Kühn U; Simonelig M; Wahle E; Bourbon HM
    Nucleic Acids Res; 1999 Oct; 27(19):3771-8. PubMed ID: 10481015
    [TBL] [Abstract][Full Text] [Related]  

  • 87. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus.
    Stebbins-Boaz B; Hake LE; Richter JD
    EMBO J; 1996 May; 15(10):2582-92. PubMed ID: 8665866
    [TBL] [Abstract][Full Text] [Related]  

  • 88. TDP-43 regulates β-adducin (Add2) transcript stability.
    Costessi L; Porro F; Iaconcig A; Muro AF
    RNA Biol; 2014; 11(10):1280-90. PubMed ID: 25602706
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Regulation of poly(A) site use during mouse B-cell development involves a change in the binding of a general polyadenylation factor in a B-cell stage-specific manner.
    Edwalds-Gilbert G; Milcarek C
    Mol Cell Biol; 1995 Nov; 15(11):6420-9. PubMed ID: 7565794
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Cleavage site determinants in the mammalian polyadenylation signal.
    Chen F; MacDonald CC; Wilusz J
    Nucleic Acids Res; 1995 Jul; 23(14):2614-20. PubMed ID: 7651822
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Characterization of a Drosophila homologue of the 160-kDa subunit of the cleavage and polyadenylation specificity factor CPSF.
    Salinas CA; Sinclair DA; O'Hare K; Brock HW
    Mol Gen Genet; 1998 Apr; 257(6):672-80. PubMed ID: 9604891
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination.
    Dichtl B; Blank D; Sadowski M; Hübner W; Weiser S; Keller W
    EMBO J; 2002 Aug; 21(15):4125-35. PubMed ID: 12145212
    [TBL] [Abstract][Full Text] [Related]  

  • 93. 3' RNA processing efficiency plays a primary role in generating termination-competent RNA polymerase II elongation complexes.
    Edwalds-Gilbert G; Prescott J; Falck-Pedersen E
    Mol Cell Biol; 1993 Jun; 13(6):3472-80. PubMed ID: 7684499
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Restoration of both structure and function to a defective poly(A) site by in vitro selection.
    Graveley BR; Fleming ES; Gilmartin GM
    J Biol Chem; 1996 Dec; 271(52):33654-63. PubMed ID: 8969235
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Heterogeneous nuclear RNA-ribonucleoprotein F binds to DNA via an oligo(dG)-motif and is associated with RNA polymerase II.
    Yoshida T; Kokura K; Makino Y; Ossipow V; Tamura T
    Genes Cells; 1999 Dec; 4(12):707-19. PubMed ID: 10620016
    [TBL] [Abstract][Full Text] [Related]  

  • 96. NAB2: a yeast nuclear polyadenylated RNA-binding protein essential for cell viability.
    Anderson JT; Wilson SM; Datar KV; Swanson MS
    Mol Cell Biol; 1993 May; 13(5):2730-41. PubMed ID: 8474438
    [TBL] [Abstract][Full Text] [Related]  

  • 97. 3' cleavage and polyadenylation of mRNA precursors in vitro requires a poly(A) polymerase, a cleavage factor, and a snRNP.
    Christofori G; Keller W
    Cell; 1988 Sep; 54(6):875-89. PubMed ID: 2842067
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Heterogeneous nuclear ribonucleoproteins as regulators of gene expression through interactions with the human thymidine kinase promoter.
    Lau JS; Baumeister P; Kim E; Roy B; Hsieh TY; Lai M; Lee AS
    J Cell Biochem; 2000 Sep; 79(3):395-406. PubMed ID: 10972977
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3'end formation of cellular pre-mRNAs.
    Nemeroff ME; Barabino SM; Li Y; Keller W; Krug RM
    Mol Cell; 1998 Jun; 1(7):991-1000. PubMed ID: 9651582
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The 25 kDa subunit of cleavage factor Im Is a RNA-binding protein that interacts with the poly(A) polymerase in Entamoeba histolytica.
    Pezet-Valdez M; Fernández-Retana J; Ospina-Villa JD; Ramírez-Moreno ME; Orozco E; Charcas-López S; Soto-Sánchez J; Mendoza-Hernández G; López-Casamicha M; López-Camarillo C; Marchat LA
    PLoS One; 2013; 8(6):e67977. PubMed ID: 23840799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.