BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 9828000)

  • 1. Stabilizing the subtilisin BPN' pro-domain by phage display selection: how restrictive is the amino acid code for maximum protein stability?
    Ruan B; Hoskins J; Wang L; Bryan PN
    Protein Sci; 1998 Nov; 7(11):2345-53. PubMed ID: 9828000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the independent folding of the subtilisin BPN' prodomain: analysis of two-state folding versus protein stability.
    Ruvinov S; Wang L; Ruan B; Almog O; Gilliland GL; Eisenstein E; Bryan PN
    Biochemistry; 1997 Aug; 36(34):10414-21. PubMed ID: 9265621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the independent folding of the subtilisin BPN' pro-domain: correlation of pro-domain stability with the rate of subtilisin folding.
    Wang L; Ruan B; Ruvinov S; Bryan PN
    Biochemistry; 1998 Mar; 37(9):3165-71. PubMed ID: 9485470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding of subtilisin BPN': role of the pro-sequence.
    Eder J; Rheinnecker M; Fersht AR
    J Mol Biol; 1993 Sep; 233(2):293-304. PubMed ID: 8377204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Key elements for protein foldability revealed by a combinatorial approach among similarly folded but distantly related proteins.
    Morimoto S; Tamura A
    Biochemistry; 2004 Jun; 43(21):6596-605. PubMed ID: 15157092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding of subtilisin BPN': characterization of a folding intermediate.
    Eder J; Rheinnecker M; Fersht AR
    Biochemistry; 1993 Jan; 32(1):18-26. PubMed ID: 8418836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of a stabilizing Ca(2+)-binding loop into subtilisin BPN'.
    Braxton S; Wells JA
    Biochemistry; 1992 Sep; 31(34):7796-801. PubMed ID: 1510966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid folding of calcium-free subtilisin by a stabilized pro-domain mutant.
    Ruan B; Hoskins J; Bryan PN
    Biochemistry; 1999 Jun; 38(26):8562-71. PubMed ID: 10387104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering thermostability in subtilisin BPN' by in vitro mutagenesis.
    Rollence ML; Filpula D; Pantoliano MW; Bryan PN
    Crit Rev Biotechnol; 1988; 8(3):217-24. PubMed ID: 3145814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding.
    Pantoliano MW; Whitlow M; Wood JF; Dodd SW; Hardman KD; Rollence ML; Bryan PN
    Biochemistry; 1989 Sep; 28(18):7205-13. PubMed ID: 2684274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of amino acid residues responsible for the changes of absorption and fluorescence spectra on the binding of subtilisin BPN' and Streptomyces subtilisin inhibitor.
    Masuda-Momma K; Shimakawa T; Inouye K; Hiromi K; Kojima S; Kumagai I; Miura K; Tonomura B
    J Biochem; 1993 Dec; 114(6):906-11. PubMed ID: 8138550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate phage: selection of protease substrates by monovalent phage display.
    Matthews DJ; Wells JA
    Science; 1993 May; 260(5111):1113-7. PubMed ID: 8493554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tertiary structure formation in the propeptide of subtilisin BPN' by successive amino acid replacements and its close relation to function.
    Kojima S; Minagawa T; Miura K
    J Mol Biol; 1998 Apr; 277(5):1007-13. PubMed ID: 9571018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel protease inhibitors via computational redesign of subtilisin BPN' propeptide.
    Daugherty AB; Muthu P; Lutz S
    Biochemistry; 2012 Oct; 51(41):8247-55. PubMed ID: 23009354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The complete amino acid substitutions at position 131 that are positively involved in cold adaptation of subtilisin BPN'.
    Taguchi S; Komada S; Momose H
    Appl Environ Microbiol; 2000 Apr; 66(4):1410-5. PubMed ID: 10742220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing subtilisin BPN' to cleave substrates containing dibasic residues.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1995 Oct; 34(41):13312-9. PubMed ID: 7577915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies of the inhibitory effects of propeptides subtilisin BPN' and Carlsberg to bacterial serine proteases.
    Huang HW; Chen WC; Wu CY; Yu HC; Lin WY; Chen ST; Wang KT
    Protein Eng; 1997 Oct; 10(10):1227-33. PubMed ID: 9488148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated refolding of subtilisin BPN' by tertiary-structure-forming mutants of its propeptide.
    Kojima S; Yanai H; Miura K
    J Biochem; 2001 Oct; 130(4):471-4. PubMed ID: 11574065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of the propeptide of subtilisin E as an intramolecular chaperone for protein folding. Refolding and inhibitory abilities of propeptide mutants.
    Li Y; Hu Z; Jordan F; Inouye M
    J Biol Chem; 1995 Oct; 270(42):25127-32. PubMed ID: 7559646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An engineered disulfide cross-link accelerates the refolding rate of calcium-free subtilisin by 850-fold.
    Strausberg S; Alexander P; Wang L; Gallagher T; Gilliland G; Bryan P
    Biochemistry; 1993 Oct; 32(39):10371-7. PubMed ID: 8399180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.