These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 9829265)

  • 21. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin.
    Luecke H; Schobert B; Cartailler JP; Richter HT; Rosengarth A; Needleman R; Lanyi JK
    J Mol Biol; 2000 Jul; 300(5):1237-55. PubMed ID: 10903866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Acid-base properties of gramicidin C].
    Komarov EV; Fomicheva GK; Rodichev AG
    Antibiotiki; 1982; 27(9):646-9. PubMed ID: 6184013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of the 11-cis-retinal ring methyl substituents in visual pigment formation.
    Domínguez M; Alvarez R; Pérez M; Palczewski K; de Lera AR
    Chembiochem; 2006 Nov; 7(11):1815-25. PubMed ID: 16941510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes.
    Tittor J; Paula S; Subramaniam S; Heberle J; Henderson R; Oesterhelt D
    J Mol Biol; 2002 May; 319(2):555-65. PubMed ID: 12051928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 14-Fluorobacteriorhodopsin and other fluorinated and 14-substituted analogues. An extra, unusually red-shifted pigment formed during dark adaptation.
    Tierno ME; Mead D; Asato AE; Liu RS; Sekiya N; Yoshihara K; Chang CW; Nakanishi K; Govindjee R; Ebrey TG
    Biochemistry; 1990 Jun; 29(25):5948-53. PubMed ID: 2383566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization.
    Kobayashi T; Saito T; Ohtani H
    Nature; 2001 Nov; 414(6863):531-4. PubMed ID: 11734850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selectivity of retinal photoisomerization in proteorhodopsin is controlled by aspartic acid 227.
    Imasheva ES; Balashov SP; Wang JM; Dioumaev AK; Lanyi JK
    Biochemistry; 2004 Feb; 43(6):1648-55. PubMed ID: 14769042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-resolved FT-IR spectroscopic investigation of the pH-dependent proton transfer reactions in the E194Q mutant of bacteriorhodopsin.
    Zscherp C; Schlesinger R; Heberle J
    Biochem Biophys Res Commun; 2001 Apr; 283(1):57-63. PubMed ID: 11322767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pressure-induced isomerization of retinal on bacteriorhodopsin as disclosed by fast magic angle spinning NMR.
    Kawamura I; Degawa Y; Yamaguchi S; Nishimura K; Tuzi S; Saitô H; Naito A
    Photochem Photobiol; 2007; 83(2):346-50. PubMed ID: 17076543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calculating absorption shifts for retinal proteins: computational challenges.
    Wanko M; Hoffmann M; Strodel P; Koslowski A; Thiel W; Neese F; Frauenheim T; Elstner M
    J Phys Chem B; 2005 Mar; 109(8):3606-15. PubMed ID: 16851399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resonance Raman studies of bacteriorhodopsin analogues.
    Schiffmiller R; Callender RH; Waddell WH; Govindjee R; Ebrey TG; Kakitani H; Honig B; Nakanishi K
    Photochem Photobiol; 1985 May; 41(5):563-7. PubMed ID: 4011709
    [No Abstract]   [Full Text] [Related]  

  • 33. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization.
    Herbst J; Heyne K; Diller R
    Science; 2002 Aug; 297(5582):822-5. PubMed ID: 12161649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Picosecond time-resolved ultraviolet resonance Raman spectroscopy of bacteriorhodopsin: primary protein response to the photoisomerization of retinal.
    Mizuno M; Shibata M; Yamada J; Kandori H; Mizutani Y
    J Phys Chem B; 2009 Sep; 113(35):12121-8. PubMed ID: 19678662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Covalent attachment of bacteriorhodopsin monolayer to bromo-terminated solid supports: preparation, characterization, and protein stability.
    Jin Y; Girshevitz O; Friedman N; Ron I; Cahen D; Sheves M
    Chem Asian J; 2008 Jul; 3(7):1146-55. PubMed ID: 18484563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. (9Z)- and (11Z)-8-methylretinals for artificial visual pigment studies: stereoselective synthesis, structure, and binding models.
    Alvarez R; Domínguez M; Pazos Y; Sussman F; de Lera AR
    Chemistry; 2003 Dec; 9(23):5821-31. PubMed ID: 14673853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photobleaching of bacteriorhodopsin solubilized with triton X-100.
    Sasaki T; Sonoyama M; Demura M; Mitaku S
    Photochem Photobiol; 2005; 81(5):1131-7. PubMed ID: 15934791
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.
    Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H
    Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H; Yoshizawa T
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined QM/MM study of the opsin shift in bacteriorhodopsin.
    Rajamani R; Gao J
    J Comput Chem; 2002 Jan; 23(1):96-105. PubMed ID: 11913393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.