These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 9829278)
1. Impaired aerobic glycolysis in muscle phosphofructokinase deficiency results in biphasic post-exercise phosphocreatine recovery in 31P magnetic resonance spectroscopy. Grehl T; Müller K; Vorgerd M; Tegenthoff M; Malin JP; Zange J Neuromuscul Disord; 1998 Oct; 8(7):480-8. PubMed ID: 9829278 [TBL] [Abstract][Full Text] [Related]
2. In vivo determination of altered hemoglobin saturation in dogs with M-type phosphofructokinase deficiency. McCully K; Chance B; Giger U Muscle Nerve; 1999 May; 22(5):621-7. PubMed ID: 10331362 [TBL] [Abstract][Full Text] [Related]
3. High-energy phosphate metabolism in the exercising muscle of patients with peripheral arterial disease. Schocke M; Esterhammer R; Greiner A Vasa; 2008 Aug; 37(3):199-210. PubMed ID: 18690587 [TBL] [Abstract][Full Text] [Related]
4. Phosphorus magnetic resonance spectroscopy (31P MRS) in neuromuscular disorders. Argov Z; Bank WJ Ann Neurol; 1991 Jul; 30(1):90-7. PubMed ID: 1834009 [TBL] [Abstract][Full Text] [Related]
5. Partial block of glycolysis in late-onset phosphofructokinase deficiency myopathy. Massa R; Lodi R; Barbiroli B; Servidei S; Sancesario G; Manfredi G; Zaniol P; Bernardi G Acta Neuropathol; 1996; 91(3):322-9. PubMed ID: 8834546 [TBL] [Abstract][Full Text] [Related]
6. Reduced metabolic efficiency of skeletal muscle energetics in hyperthyroid patients evidenced quantitatively by in vivo phosphorus-31 magnetic resonance spectroscopy. Erkintalo M; Bendahan D; Mattéi JP; Fabreguettes C; Vague P; Cozzone PJ Metabolism; 1998 Jul; 47(7):769-76. PubMed ID: 9667219 [TBL] [Abstract][Full Text] [Related]
7. Glycolytic ATP production estimated from 31P magnetic resonance spectroscopy measurements during ischemic exercise in vivo. Wackerhage H; Mueller K; Hoffmann U; Leyk D; Essfeld D; Zange J MAGMA; 1996; 4(3-4):151-5. PubMed ID: 9220403 [TBL] [Abstract][Full Text] [Related]
8. Absence of phosphocreatine resynthesis in human calf muscle during ischaemic recovery. Quistorff B; Johansen L; Sahlin K Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):681-6. PubMed ID: 8489495 [TBL] [Abstract][Full Text] [Related]
9. [Exercise-induced muscle pain due to phosphofrutokinase deficiency: Diagnostic contribution of metabolic explorations (exercise tests, 31P-nuclear magnetic resonance spectroscopy)]. Drouet A; Zagnoli F; Fassier T; Rannou F; Baverel F; Piraud M; Bahuau M; Petit F; Streichenberger N; Marcorelles P; Vital Durand D Rev Neurol (Paris); 2013; 169(8-9):613-24. PubMed ID: 24011984 [TBL] [Abstract][Full Text] [Related]
10. A non-invasive selective assessment of type I fibre mitochondrial function using 31P NMR spectroscopy. Evidence for impaired oxidative phosphorylation rate in skeletal muscle in patients with chronic heart failure. van der Ent M; Jeneson JA; Remme WJ; Berger R; Ciampricotti R; Visser F Eur Heart J; 1998 Jan; 19(1):124-31. PubMed ID: 9503185 [TBL] [Abstract][Full Text] [Related]
12. Interrelations of ATP synthesis and proton handling in ischaemically exercising human forearm muscle studied by 31P magnetic resonance spectroscopy. Kemp GJ; Roussel M; Bendahan D; Le Fur Y; Cozzone PJ J Physiol; 2001 Sep; 535(Pt 3):901-28. PubMed ID: 11559784 [TBL] [Abstract][Full Text] [Related]
13. Dynamic phosphorus-31 magnetic resonance spectroscopy in arterial occlusive disease. Correlation with clinical and angiographic findings and comparison with healthy volunteers. Schunk K; Romaneehsen B; Mildenberger P; Kersjes W; Schadmand-Fischer S; Thelen M Invest Radiol; 1997 Nov; 32(11):651-9. PubMed ID: 9387051 [TBL] [Abstract][Full Text] [Related]
14. Energy metabolism of the untrained muscle of elite runners as observed by 31P magnetic resonance spectroscopy: evidence suggesting a genetic endowment for endurance exercise. Park JH; Brown RL; Park CR; Cohn M; Chance B Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8780-4. PubMed ID: 3194388 [TBL] [Abstract][Full Text] [Related]
15. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. Kemp GJ; Meyerspeer M; Moser E NMR Biomed; 2007 Oct; 20(6):555-65. PubMed ID: 17628042 [TBL] [Abstract][Full Text] [Related]
16. Phosphocreatine recovery kinetics following low- and high-intensity exercise in human triceps surae and rat posterior hindlimb muscles. Forbes SC; Paganini AT; Slade JM; Towse TF; Meyer RA Am J Physiol Regul Integr Comp Physiol; 2009 Jan; 296(1):R161-70. PubMed ID: 18945946 [TBL] [Abstract][Full Text] [Related]
17. Muscle metabolism during lactate infusion in human phosphofructokinase deficiency. Bertocci LA; Haller RG; Lewis SF J Appl Physiol (1985); 1993 Mar; 74(3):1342-7. PubMed ID: 8482676 [TBL] [Abstract][Full Text] [Related]
18. Factors affecting the rate of phosphocreatine resynthesis following intense exercise. McMahon S; Jenkins D Sports Med; 2002; 32(12):761-84. PubMed ID: 12238940 [TBL] [Abstract][Full Text] [Related]
19. Comparisons of ATP turnover in human muscle during ischemic and aerobic exercise using 31P magnetic resonance spectroscopy. Kemp GJ; Thompson CH; Barnes PR; Radda GK Magn Reson Med; 1994 Mar; 31(3):248-58. PubMed ID: 8057795 [TBL] [Abstract][Full Text] [Related]
20. Skeletal muscle metabolism in myotonic dystrophy A 31P magnetic resonance spectroscopy study. Barnes PR; Kemp GJ; Taylor DJ; Radda GK Brain; 1997 Oct; 120 ( Pt 10)():1699-711. PubMed ID: 9365364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]