These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 9829606)
1. The thermodilution technique for measuring resting energy expenditure does not agree with indirect calorimetry for the critically ill patient. Ogawa AM; Shikora SA; Burke LM; Heetderks-Cox JE; Bergren CT; Muskat PC JPEN J Parenter Enteral Nutr; 1998; 22(6):347-51. PubMed ID: 9829606 [TBL] [Abstract][Full Text] [Related]
2. Comparison of indirect calorimetry, the Fick method, and prediction equations in estimating the energy requirements of critically ill patients. Flancbaum L; Choban PS; Sambucco S; Verducci J; Burge JC Am J Clin Nutr; 1999 Mar; 69(3):461-6. PubMed ID: 10075331 [TBL] [Abstract][Full Text] [Related]
3. Accurate determination of energy needs in hospitalized patients. Boullata J; Williams J; Cottrell F; Hudson L; Compher C J Am Diet Assoc; 2007 Mar; 107(3):393-401. PubMed ID: 17324656 [TBL] [Abstract][Full Text] [Related]
4. Resting Energy Expenditure in Critically Ill Patients With Spontaneous Intracranial Hemorrhage. Koukiasa P; Bitzani M; Papaioannou V; Pnevmatikos I JPEN J Parenter Enteral Nutr; 2015 Nov; 39(8):917-21. PubMed ID: 24928226 [TBL] [Abstract][Full Text] [Related]
5. Can Vco Mouzaki M; Schwartz SM; Mtaweh H; La Rotta G; Mah K; Herridge J; Van Arsdell G; Parshuram CS; Floh AA JPEN J Parenter Enteral Nutr; 2017 May; 41(4):619-624. PubMed ID: 26950946 [TBL] [Abstract][Full Text] [Related]
6. Energy expenditure in critically ill surgical patients. Comparative analysis of predictive equation and indirect calorimetry. Auxiliadora Martins M; Menegueti MG; Nicolini EA; Picolo MF; Lago AF; Martins Filho OA; Basile Filho A Acta Cir Bras; 2011; 26 Suppl 2():51-6. PubMed ID: 22030815 [TBL] [Abstract][Full Text] [Related]
7. Resting energy expenditure during mechanical ventilation and its relationship with the type of lesion. Raurich JM; Ibáñez J; Marsé P; Riera M; Homar X JPEN J Parenter Enteral Nutr; 2007; 31(1):58-62. PubMed ID: 17202442 [TBL] [Abstract][Full Text] [Related]
8. Determination of resting energy expenditure utilizing the thermodilution pulmonary artery catheter. Liggett SB; St John RE; Lefrak SS Chest; 1987 Apr; 91(4):562-6. PubMed ID: 3829749 [TBL] [Abstract][Full Text] [Related]
9. Energy expenditure and gas exchange measurements in postoperative patients: thermodilution versus indirect calorimetry. Brandi LS; Grana M; Mazzanti T; Giunta F; Natali A; Ferrannini E Crit Care Med; 1992 Sep; 20(9):1273-83. PubMed ID: 1521442 [TBL] [Abstract][Full Text] [Related]
10. Predicted versus measured resting energy expenditure in patients requiring home parenteral nutrition. Ławiński M; Singer P; Gradowski Ł; Gradowska A; Bzikowska A; Majewska K Nutrition; 2015; 31(11-12):1328-32. PubMed ID: 26278135 [TBL] [Abstract][Full Text] [Related]
11. Nutrition Assessment With Indirect Calorimetry in Patients Evaluated for Left Ventricular Assist Device Implantation. Yost G; Gregory M; Bhat G Nutr Clin Pract; 2015 Oct; 30(5):690-7. PubMed ID: 26024679 [TBL] [Abstract][Full Text] [Related]
12. Accuracy of abbreviated indirect calorimetry protocols for energy expenditure measurement in critically ill children. Smallwood CD; Mehta NM JPEN J Parenter Enteral Nutr; 2012 Nov; 36(6):693-9. PubMed ID: 22510266 [TBL] [Abstract][Full Text] [Related]
13. [Energy expenditure at rest: indirect calorimetry vs the Fick principle]. Raurich Puigdevall JM; Ibáñez Juvé J Nutr Hosp; 1998; 13(6):303-8. PubMed ID: 9889555 [TBL] [Abstract][Full Text] [Related]
14. Comparison of measured versus predicted energy requirements in critically ill cancer patients. Pirat A; Tucker AM; Taylor KA; Jinnah R; Finch CG; Canada TD; Nates JL Respir Care; 2009 Apr; 54(4):487-94. PubMed ID: 19327184 [TBL] [Abstract][Full Text] [Related]
15. Comparison of three methods of determining oxygen consumption and resting energy expenditure. Walsh BJ; Morley TF J Am Osteopath Assoc; 1989 Jan; 89(1):43-6. PubMed ID: 2921120 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of a non-invasive multisensor accelerometer for calculating energy expenditure in ventilated intensive care patients compared to indirect calorimetry and predictive equations. Krüger J; Kraft M; Gründling M; Friesecke S; Gärtner S; Vogt LJ; Schüler N; Steveling A; Lerch MM; Aghdassi AA J Clin Monit Comput; 2017 Oct; 31(5):1009-1017. PubMed ID: 27628058 [TBL] [Abstract][Full Text] [Related]
17. Harris-Benedict Equation and Resting Energy Expenditure Estimates in Critically Ill Ventilator Patients. Picolo MF; Lago AF; Menegueti MG; Nicolini EA; Basile-Filho A; Nunes AA; Martins-Filho OA; Auxiliadora-Martins M Am J Crit Care; 2016 Jan; 25(1):e21-9. PubMed ID: 26724304 [TBL] [Abstract][Full Text] [Related]
18. Measured versus calculated resting energy expenditure in critically ill adult patients. Do mathematics match the gold standard? De Waele E; Opsomer T; Honoré PM; Diltoer M; Mattens S; Huyghens L; Spapen H Minerva Anestesiol; 2015 Mar; 81(3):272-82. PubMed ID: 25077603 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Mindray metabolic system and the GE S/5 metabolic system: Indirect calorimetry in critically ill, mechanically ventilated patients. Fishman G; Kagan I; Robinson E; Singer P Nutrition; 2022; 99-100():111632. PubMed ID: 35588651 [TBL] [Abstract][Full Text] [Related]
20. Best practices for determining resting energy expenditure in critically ill adults. Schlein KM; Coulter SP Nutr Clin Pract; 2014 Feb; 29(1):44-55. PubMed ID: 24336442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]