These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 9829606)
21. MECCIAS trial: Metabolic consequences of continuous veno-venous hemofiltration on indirect calorimetry. Jonckheer J; Demol J; Lanckmans K; Malbrain MLNG; Spapen H; De Waele E Clin Nutr; 2020 Dec; 39(12):3797-3803. PubMed ID: 32371095 [TBL] [Abstract][Full Text] [Related]
22. The Novel Use of Point-of-Care Ultrasound to Predict Resting Energy Expenditure in Critically Ill Patients. Mukhtar A; Abdelghany M; Hasanin A; Hamimy W; Abougabal A; Nasser H; Elsayed A; Ayman E J Ultrasound Med; 2021 Aug; 40(8):1581-1589. PubMed ID: 33085099 [TBL] [Abstract][Full Text] [Related]
23. Prediction equation of resting energy expenditure in an adult Spanish population of obese adult population. de Luis DA; Aller R; Izaola O; Romero E Ann Nutr Metab; 2006; 50(3):193-6. PubMed ID: 16407645 [TBL] [Abstract][Full Text] [Related]
24. Energy imbalance and the risk of overfeeding in critically ill children. Mehta NM; Bechard LJ; Dolan M; Ariagno K; Jiang H; Duggan C Pediatr Crit Care Med; 2011 Jul; 12(4):398-405. PubMed ID: 20975614 [TBL] [Abstract][Full Text] [Related]
25. Energy Expenditure After Liver Resection: Validation of a Mobile Device for Estimating Resting Energy Expenditure and an Investigation of Energy Expenditure Change After Liver Resection. Hughes MJ; Harrison EM; Wigmore SJ JPEN J Parenter Enteral Nutr; 2017 Jul; 41(5):766-775. PubMed ID: 26304600 [TBL] [Abstract][Full Text] [Related]
26. Components of energy expenditure in patients with severe sepsis and major trauma: a basis for clinical care. Uehara M; Plank LD; Hill GL Crit Care Med; 1999 Jul; 27(7):1295-302. PubMed ID: 10446823 [TBL] [Abstract][Full Text] [Related]
27. Resting energy expenditure in severely burned children: analysis of agreement between indirect calorimetry and prediction equations using the Bland-Altman method. Suman OE; Mlcak RP; Chinkes DL; Herndon DN Burns; 2006 May; 32(3):335-42. PubMed ID: 16529869 [TBL] [Abstract][Full Text] [Related]
28. Indirect calorimetry: a guide for optimizing nutritional support in the critically ill child. Sion-Sarid R; Cohen J; Houri Z; Singer P Nutrition; 2013 Sep; 29(9):1094-9. PubMed ID: 23927944 [TBL] [Abstract][Full Text] [Related]
29. Validity of predictive equations for resting energy expenditure according to the body mass index in a population of 1726 patients followed in a Nutrition Unit. Jésus P; Achamrah N; Grigioni S; Charles J; Rimbert A; Folope V; Petit A; Déchelotte P; Coëffier M Clin Nutr; 2015 Jun; 34(3):529-35. PubMed ID: 25016971 [TBL] [Abstract][Full Text] [Related]
30. Retrospective evaluation of commonly used equations to predict energy expenditure in mechanically ventilated, critically ill patients. Alexander E; Susla GM; Burstein AH; Brown DT; Ognibene FP Pharmacotherapy; 2004 Dec; 24(12):1659-67. PubMed ID: 15585435 [TBL] [Abstract][Full Text] [Related]
31. Indirect Calorimetry in Mechanically Ventilated Patients: A Prospective, Randomized, Clinical Validation of 2 Devices Against a Gold Standard. Allingstrup MJ; Kondrup J; Perner A; Christensen PL; Jensen TH; Henneberg SW JPEN J Parenter Enteral Nutr; 2017 Nov; 41(8):1272-1277. PubMed ID: 27488830 [TBL] [Abstract][Full Text] [Related]
32. Influence of different dialysis modalities in the measurement of resting energy expenditure in patients with acute kidney injury in ICU. Góes CR; Vogt BP; Sanches ACS; Balbi AL; Ponce D Clin Nutr; 2017 Aug; 36(4):1170-1174. PubMed ID: 27595381 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of oxygen uptake and delivery in critically ill patients: a statistical reappraisal. Hanique G; Dugernier T; Laterre PF; Roeseler J; Dougnac A; Reynaert MS Intensive Care Med; 1994; 20(1):19-26. PubMed ID: 8163753 [TBL] [Abstract][Full Text] [Related]
34. Minimum Time to Achieve the Steady State and Optimum Abbreviated Period to Estimate the Resting Energy Expenditure by Indirect Calorimetry in Healthy Young Adults. Borges JH; Langer RD; Cirolini VX; Páscoa MA; Guerra-Júnior G; Gonçalves EM Nutr Clin Pract; 2016 Jun; 31(3):349-54. PubMed ID: 26888859 [TBL] [Abstract][Full Text] [Related]
35. Resting energy expenditure in the critically ill: estimations versus measurement. Hunter DC; Jaksic T; Lewis D; Benotti PN; Blackburn GL; Bistrian BR Br J Surg; 1988 Sep; 75(9):875-8. PubMed ID: 3179663 [TBL] [Abstract][Full Text] [Related]
36. Validation of predictive equations for resting energy expenditure in adult outpatients and inpatients. Weijs PJ; Kruizenga HM; van Dijk AE; van der Meij BS; Langius JA; Knol DL; Strack van Schijndel RJ; van Bokhorst-de van der Schueren MA Clin Nutr; 2008 Feb; 27(1):150-7. PubMed ID: 17961867 [TBL] [Abstract][Full Text] [Related]
37. Energy expenditure in critically ill children. Framson CM; LeLeiko NS; Dallal GE; Roubenoff R; Snelling LK; Dwyer JT Pediatr Crit Care Med; 2007 May; 8(3):264-7. PubMed ID: 17417117 [TBL] [Abstract][Full Text] [Related]
38. Introducing a new generation indirect calorimeter for estimating energy requirements in adult intensive care unit patients: feasibility, practical considerations, and comparison with a mathematical equation. De Waele E; Spapen H; Honoré PM; Mattens S; Van Gorp V; Diltoer M; Huyghens L J Crit Care; 2013 Oct; 28(5):884.e1-6. PubMed ID: 23561944 [TBL] [Abstract][Full Text] [Related]
39. Accuracy of 30-minute indirect calorimetry studies in predicting 24-hour energy expenditure in mechanically ventilated, critically ill patients. Smyrnios NA; Curley FJ; Shaker KG JPEN J Parenter Enteral Nutr; 1997; 21(3):168-74. PubMed ID: 9168370 [TBL] [Abstract][Full Text] [Related]
40. Longitudinal analysis of caloric requirements in critically ill trauma patients: a retrospective cohort study. Magyar CTJ; Schnüriger B; Köhn N; Jakob DA; Candinas D; Haenggi M; Haltmeier T Eur J Trauma Emerg Surg; 2024 Jun; 50(3):913-923. PubMed ID: 38353717 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]