These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 9830116)
1. Rapid method for fluorescent in situ ribosomal RNA labelling of Cryptosporidium parvum. Deere D; Vesey G; Milner M; Williams K; Ashbolt N; Veal D J Appl Microbiol; 1998 Nov; 85(5):807-18. PubMed ID: 9830116 [TBL] [Abstract][Full Text] [Related]
2. The use of a ribosomal RNA targeted oligonucleotide probe for fluorescent labelling of viable Cryptosporidium parvum oocysts. Vesey G; Ashbolt N; Fricker EJ; Deere D; Williams KL; Veal DA; Dorsch M J Appl Microbiol; 1998 Sep; 85(3):429-40. PubMed ID: 9750273 [TBL] [Abstract][Full Text] [Related]
3. Determination of Cryptosporidium parvum oocyst viability by fluorescence in situ hybridization using a ribosomal RNA-directed probe. Smith JJ; Gunasekera TS; Barardi CR; Veal D; Vesey G J Appl Microbiol; 2004; 96(2):409-17. PubMed ID: 14723702 [TBL] [Abstract][Full Text] [Related]
4. Direct counting of Cryptosporidium parvum oocysts using fluorescence in situ hybridization on a membrane filter. Taguchi T; Shinozaki Y; Takeyama H; Haraguchi S; Yoshino M; Kaneko M; Ishimori Y; Matsunaga T J Microbiol Methods; 2006 Nov; 67(2):373-80. PubMed ID: 16793153 [TBL] [Abstract][Full Text] [Related]
5. Study of 18S rRNA and rDNA stability by real-time RT-PCR in heat-inactivated Cryptosporidium parvum oocysts. Fontaine M; Guillot E FEMS Microbiol Lett; 2003 Sep; 226(2):237-43. PubMed ID: 14553917 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of fluorochromes for flow cytometric detection of Cryptosporidium parvum oocysts labelled by fluorescent in situ hybridization. Deere D; Vesey G; Ashbolt N; Davies KA; Williams KL; Veal D Lett Appl Microbiol; 1998 Dec; 27(6):352-6. PubMed ID: 9871354 [TBL] [Abstract][Full Text] [Related]
7. Species-specific, nested PCR-restriction fragment length polymorphism detection of single Cryptosporidium parvum oocysts. Sturbaum GD; Reed C; Hoover PJ; Jost BH; Marshall MM; Sterling CR Appl Environ Microbiol; 2001 Jun; 67(6):2665-8. PubMed ID: 11375178 [TBL] [Abstract][Full Text] [Related]
8. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Stoecker K; Dorninger C; Daims H; Wagner M Appl Environ Microbiol; 2010 Feb; 76(3):922-6. PubMed ID: 19966029 [TBL] [Abstract][Full Text] [Related]
9. Survival of Cryptosporidium parvum oocysts in the presence of hydrated lime. Zintl A; Keogh B; Ezzaty-Mirhashemi M; De Waal T; Scholz D; Mulcahy G Vet Rec; 2010 Mar; 166(10):297-300. PubMed ID: 20208077 [TBL] [Abstract][Full Text] [Related]
10. Specific and quantitative detection and identification of Cryptosporidium hominis and C. parvum in clinical and environmental samples. Yang R; Murphy C; Song Y; Ng-Hublin J; Estcourt A; Hijjawi N; Chalmers R; Hadfield S; Bath A; Gordon C; Ryan U Exp Parasitol; 2013 Sep; 135(1):142-7. PubMed ID: 23838581 [TBL] [Abstract][Full Text] [Related]
11. Quantitation of Cryptosporidium parvum infection in cell culture using a colorimetric in situ hybridization assay. Rochelle PA; Ferguson DM; Johnson AM; De Leon R J Eukaryot Microbiol; 2001; 48(5):565-74. PubMed ID: 11596921 [TBL] [Abstract][Full Text] [Related]
12. Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts. Hønsvall BK; Robertson LJ Exp Parasitol; 2017 Jan; 172():61-67. PubMed ID: 27998735 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of excretion and molecular characterization of Cryptosporidium isolates in pre-weaned French beef calves. Rieux A; Chartier C; Pors I; Paraud C Vet Parasitol; 2013 Jul; 195(1-2):169-72. PubMed ID: 23312870 [TBL] [Abstract][Full Text] [Related]
14. In situ reverse transcription for the specific detection of bacteria and protozoa. Prescott AM; Fricker CR Lett Appl Microbiol; 1999 Dec; 29(6):396-400. PubMed ID: 10664984 [TBL] [Abstract][Full Text] [Related]
15. Identification and determination of the viability of Giardia lamblia cysts and Cryptosporidium parvum and Cryptosporidium hominis oocysts in human fecal and water supply samples by fluorescent in situ hybridization (FISH) and monoclonal antibodies. Lemos V; Graczyk TK; Alves M; Lobo ML; Sousa MC; Antunes F; Matos O Parasitol Res; 2005 Dec; 98(1):48-53. PubMed ID: 16261356 [TBL] [Abstract][Full Text] [Related]
16. PCR cloning and nucleotide sequence determination of the 18S rRNA genes and internal transcribed spacer 1 of the protozoan parasites Cryptosporidium parvum and Cryptosporidium muris. Cai J; Collins MD; McDonald V; Thompson DE Biochim Biophys Acta; 1992 Jul; 1131(3):317-20. PubMed ID: 1627648 [TBL] [Abstract][Full Text] [Related]
17. Development of a TaqMan quantitative PCR assay specific for Cryptosporidium parvum. Fontaine M; Guillot E FEMS Microbiol Lett; 2002 Aug; 214(1):13-7. PubMed ID: 12204366 [TBL] [Abstract][Full Text] [Related]
18. Intra-isolate variation of Cryptosporidium parvum small subunit ribosomal RNA genes from human hosts in England. Gibbons-Matthews C; Prescott AM Parasitol Res; 2003 Aug; 90(6):439-44. PubMed ID: 12764612 [TBL] [Abstract][Full Text] [Related]
19. In situ identification of symbiotic dinoflagellates, the genus Symbiodinium with fluorescence-labeled rRNA-targeted oligonucleotide probes. Yokouchi H; Takeyama H; Miyashita H; Maruyama T; Matsunaga T J Microbiol Methods; 2003 Jun; 53(3):327-34. PubMed ID: 12689710 [TBL] [Abstract][Full Text] [Related]
20. Genotyping of single Cryptosporidium oocysts in sewage by semi-nested PCR and direct sequencing. Hashimoto A; Sugimoto H; Morita S; Hirata T Water Res; 2006 Jul; 40(13):2527-32. PubMed ID: 16790257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]