These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 9830127)
1. Evaluation of proteolytic activity of micro-organisms isolated from dry cured ham. Rodríguez M; Núñez F; Córdoba JJ; Bermúdez ME; Asensio MA J Appl Microbiol; 1998 Nov; 85(5):905-12. PubMed ID: 9830127 [TBL] [Abstract][Full Text] [Related]
2. Proteolytic activity of Staphylococcus xylosus strains on pork myofibrillar and sarcoplasmic proteins and use of selected strains in the production of "Naples type" salami. Mauriello G; Casaburi A; Villani F J Appl Microbiol; 2002; 92(3):482-90. PubMed ID: 11872124 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of microbial proteolysis in meat products by capillary electrophoresis. Martín A; Córdoba JJ; Rodríguez MM; Núñez F; Asensio MA J Appl Microbiol; 2001 Feb; 90(2):163-71. PubMed ID: 11168718 [TBL] [Abstract][Full Text] [Related]
4. Effect of Penicillium chrysogenum and Debaryomyces hansenii on the volatile compounds during controlled ripening of pork loins. Martín A; Córdoba JJ; Benito MJ; Aranda E; Asensio MA Int J Food Microbiol; 2003 Aug; 84(3):327-38. PubMed ID: 12810295 [TBL] [Abstract][Full Text] [Related]
5. Hydrolytic activity of Penicillium chrysogenum Pg222 on pork myofibrillar proteins. Benito MJ; Córdoba JJ; Alonso M; Asensio MA; Núñez F Int J Food Microbiol; 2003 Dec; 89(2-3):155-61. PubMed ID: 14623381 [TBL] [Abstract][Full Text] [Related]
6. Proteolytic activity of Penicillium chrysogenum and Debaryomyces hansenii during controlled ripening of pork loins. Martín A; Asensio MA; Bermúdez ME; Córdoba MG; Aranda E; Córdoba JJ Meat Sci; 2002 Sep; 62(1):129-37. PubMed ID: 22061201 [TBL] [Abstract][Full Text] [Related]
7. Proteolytic activity of lactic acid bacteria strains and fungal biota for potential use as starter cultures in dry-cured ham. Toledano A; Jordano R; López C; Medina LM J Food Prot; 2011 May; 74(5):826-9. PubMed ID: 21549056 [TBL] [Abstract][Full Text] [Related]
8. Contribution of a selected fungal population to the volatile compounds on dry-cured ham. Martín A; Córdoba JJ; Aranda E; Córdoba MG; Asensio MA Int J Food Microbiol; 2006 Jul; 110(1):8-18. PubMed ID: 16564595 [TBL] [Abstract][Full Text] [Related]
9. Contribution of a selected fungal population to proteolysis on dry-cured ham. Martín A; Córdoba JJ; Núñez F; Benito MJ; Asensio MA Int J Food Microbiol; 2004 Jul; 94(1):55-66. PubMed ID: 15172485 [TBL] [Abstract][Full Text] [Related]
10. Effect of protease EPg222 obtained from Penicillium chrysogenum isolated from dry-cured ham in pieces of pork loins. Benito MJ; Rodríguez M; Sosa MJ; Martín A; Córdoba JJ J Agric Food Chem; 2003 Jan; 51(1):106-11. PubMed ID: 12502393 [TBL] [Abstract][Full Text] [Related]
11. Gram-positive, catalase-positive cocci from dry cured Iberian ham and their enterotoxigenic potential. Rodríguez M; Núñez F; Córdoba JJ; Bermúdez E; Asensio MA Appl Environ Microbiol; 1996 Jun; 62(6):1897-902. PubMed ID: 8787389 [TBL] [Abstract][Full Text] [Related]
12. Potential of yeasts isolated from dry-cured ham to control ochratoxin A production in meat models. Peromingo B; Núñez F; Rodríguez A; Alía A; Andrade MJ Int J Food Microbiol; 2018 Mar; 268():73-80. PubMed ID: 29335227 [TBL] [Abstract][Full Text] [Related]
13. Identification and control of moulds responsible for black spot spoilage in dry-cured ham. Alía A; Andrade MJ; Rodríguez A; Reyes-Prieto M; Bernáldez V; Córdoba JJ Meat Sci; 2016 Dec; 122():16-24. PubMed ID: 27468139 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of ochratoxigenic moulds by Debaryomyces hansenii strains for biopreservation of dry-cured meat products. Andrade MJ; Thorsen L; Rodríguez A; Córdoba JJ; Jespersen L Int J Food Microbiol; 2014 Jan; 170():70-7. PubMed ID: 24291184 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Staphylococcus spp. and Micrococcus spp. isolated from Iberian ham throughout the ripening process. Rodríguez M; Núñez F; Córdoba JJ; Sanabria C; Bermúdez E; Asensio MA Int J Food Microbiol; 1994 Dec; 24(1-2):329-35. PubMed ID: 7703026 [TBL] [Abstract][Full Text] [Related]
16. The role of bacterial fermentation in the hydrolysis and oxidation of sarcoplasmic and myofibrillar proteins in Harbin dry sausages. Chen Q; Kong B; Han Q; Liu Q; Xu L Meat Sci; 2016 Nov; 121():196-206. PubMed ID: 27341621 [TBL] [Abstract][Full Text] [Related]
17. Proteolytic activity of Saccharomyces cerevisiae strains associated with Italian dry-fermented sausages in a model system. Chaves-López C; Paparella A; Tofalo R; Suzzi G Int J Food Microbiol; 2011 Oct; 150(1):50-8. PubMed ID: 21849218 [TBL] [Abstract][Full Text] [Related]
18. Contribution of starter cultures to the proteolytic process of a fermented non-dried whole muscle ham product. Scannell AG; Kenneally PM; Arendt EK Int J Food Microbiol; 2004 Jun; 93(2):219-30. PubMed ID: 15135960 [TBL] [Abstract][Full Text] [Related]
19. Influence of ochratoxin A on adaptation of Penicillium nordicum on a NaCl-rich dry-cured ham-based medium. Delgado J; da Cruz Cabral L; Rodríguez M; Rodríguez A Int J Food Microbiol; 2018 May; 272():22-28. PubMed ID: 29505956 [TBL] [Abstract][Full Text] [Related]
20. Catalase-positive cocci in fermented sausage: Variability due to different pork breeds, breeding systems and sausage production technology. Iacumin L; Manzano M; Comi G Food Microbiol; 2012 Apr; 29(2):178-86. PubMed ID: 22202871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]