These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9830141)

  • 1. Use of an electronic nose for the early detection and differentiation between spoilage fungi.
    Keshri G; Magan N; Voysey P
    Lett Appl Microbiol; 1998 Nov; 27(5):261-4. PubMed ID: 9830141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early detection of spoilage moulds in bread using volatile production patterns and quantitative enzyme assays.
    Keshri G; Voysey P; Magan N
    J Appl Microbiol; 2002; 92(1):165-72. PubMed ID: 11849341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a MS-electronic nose for prediction of early fungal spoilage of bakery products.
    Marín S; Vinaixa M; Brezmes J; Llobet E; Vilanova X; Correig X; Ramos AJ; Sanchis V
    Int J Food Microbiol; 2007 Feb; 114(1):10-6. PubMed ID: 17207549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and differentiation between mycotoxigenic and non-mycotoxigenic strains of two Fusarium spp. using volatile production profiles and hydrolytic enzymes.
    Keshri G; Magan N
    J Appl Microbiol; 2000 Nov; 89(5):825-33. PubMed ID: 11119157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence of xerophilic fungi in bakery gingerbread production.
    Vytrasová J; Pribánová P; Marvanová L
    Int J Food Microbiol; 2002 Jan; 72(1-2):91-6. PubMed ID: 11843418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spoilage fungi in a bread factory in Brazil: Diversity and incidence through the bread-making process.
    Garcia MV; Bernardi AO; Parussolo G; Stefanello A; Lemos JG; Copetti MV
    Food Res Int; 2019 Dec; 126():108593. PubMed ID: 31732034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early detection of fungal growth in bakery products by use of an electronic nose based on mass spectrometry.
    Vinaixa M; Marín S; Brezmes J; Llobet E; Vilanova X; Correig X; Ramos A; Sanchis V
    J Agric Food Chem; 2004 Oct; 52(20):6068-74. PubMed ID: 15453668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipolytic activity and degradation of rapeseed oil and rapeseed by spoilage fungi.
    Magan N; Jenkins NE; Howarth J
    Int J Food Microbiol; 1993 Aug; 19(3):217-27. PubMed ID: 8217518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of temperature, water activity and pH on growth of some xerophilic fungi.
    Gock MA; Hocking AD; Pitt JI; Poulos PG
    Int J Food Microbiol; 2003 Feb; 81(1):11-9. PubMed ID: 12423914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulating effect of sorbitol and xylitol on germination and growth of some xerophilic fungi.
    Patriarca A; Larumbe G; Buera MP; Vaamonde G
    Food Microbiol; 2011 Dec; 28(8):1463-7. PubMed ID: 21925029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and identification of xerophilic fungi in Belgian chocolate confectionery factories.
    De Clercq N; Van Coillie E; Van Pamel E; De Meulenaer B; Devlieghere F; Vlaemynck G
    Food Microbiol; 2015 Apr; 46():322-328. PubMed ID: 25475302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values.
    Suhr KI; Nielsen PV
    Int J Food Microbiol; 2004 Aug; 95(1):67-78. PubMed ID: 15240076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of reduced water activity and reduced matric potential on the germination of xerophilic and non-xerophilic fungi.
    Huang Y; Begum M; Chapman B; Hocking AD
    Int J Food Microbiol; 2010 May; 140(1):1-5. PubMed ID: 20231042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention of toxigenic fungal growth in stored grains by carbon dioxide detection.
    Zhai HC; Zhang SB; Huang SX; Cai JP
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):596-603. PubMed ID: 25254604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Associated mycoflora of rye bread.
    Lund F; Filtenborg O; Westall S; Frisvad JC
    Lett Appl Microbiol; 1996 Oct; 23(4):213-7. PubMed ID: 8987693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of agar concentration on the matric potential of glycerol agar media and the germination and growth of xerophilic and non-xerophilic fungi.
    Huang Y; Chapman B; Wilson M; Hocking AD
    Int J Food Microbiol; 2009 Jul; 133(1-2):179-85. PubMed ID: 19520449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Penicillium species in complex food samples using the polymerase chain reaction.
    Pedersen LH; Skouboe P; Boysen M; Soule J; Rossen L
    Int J Food Microbiol; 1997 Apr; 35(2):169-77. PubMed ID: 9105925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composition of the fungal flora of four cereal grains in Saudi Arabia.
    Abdel-Hafez SI
    Mycopathologia; 1984 Mar; 85(1-2):53-7. PubMed ID: 6727980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incidence and detection of thermotolerant and thermophilic fungi from maize with particular reference to Thermoascus species.
    Wareing PW
    Int J Food Microbiol; 1997 Apr; 35(2):137-45. PubMed ID: 9105921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycofloral changes and aflatoxin contamination in stored chickpea seeds.
    Ahmad SK; Singh PL
    Food Addit Contam; 1991; 8(6):723-30. PubMed ID: 1812019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.