These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 9830704)

  • 21. Grouping feedback components by common fate benefits motor-respiratory coordination.
    Hessler EE
    J Mot Behav; 2015; 47(2):95-105. PubMed ID: 25340680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Re-Appraisal of the Effect of Amplitude on the Stability of Interlimb Coordination Based on Tightened Normalization Procedures.
    de Poel HJ; Roerdink M; Peper CLE; Beek PJ
    Brain Sci; 2020 Oct; 10(10):. PubMed ID: 33066054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase Transitions and Critical Fluctuations in Rhythmic Coordination of Ipsilateral Hand and Foot.
    Carson RG; Goodman D; Kelso JA; Elliott D
    J Mot Behav; 1995 Sep; 27(3):211-224. PubMed ID: 12529233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interlimb coupling strength scales with movement amplitude.
    Peper CL; de Boer BJ; de Poel HJ; Beek PJ
    Neurosci Lett; 2008 May; 437(1):10-4. PubMed ID: 18423866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonstationarity of stable States in rhythmic bimanual coordination.
    James EG
    Motor Control; 2014 Apr; 18(2):184-98. PubMed ID: 24280123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Getting into the Swing of things: An investigation into rhythmic unimanual coordination in typically developing children.
    Gaul D; Issartel J
    Neurosci Lett; 2018 Apr; 671():148-153. PubMed ID: 29331628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deterministic variability and stability in detuned bimanual rhythmic coordination.
    Riley MA; Santana MV; Turvey MT
    Hum Mov Sci; 2001 Jun; 20(3):343-69. PubMed ID: 11517675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Location but not amount of stimulus occlusion influences the stability of visuo-motor coordination.
    Hajnal A; Richardson MJ; Harrison SJ; Schmidt RC
    Exp Brain Res; 2009 Oct; 199(1):89-93. PubMed ID: 19657633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupling dynamics in speech gestures: amplitude and rate influences.
    van Lieshout PHHM
    Exp Brain Res; 2017 Aug; 235(8):2495-2510. PubMed ID: 28516196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relative phase destabilization during interlimb coordination: the disruptive role of kinesthetic afferences induced by passive movement.
    Swinnen SP; Dounskaia N; Verschueren S; Serrien DJ; Daelman A
    Exp Brain Res; 1995; 105(3):439-54. PubMed ID: 7498398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unraveling interlimb interactions underlying bimanual coordination.
    Ridderikhoff A; Peper CL; Beek PJ
    J Neurophysiol; 2005 Nov; 94(5):3112-25. PubMed ID: 16000517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of volition on the stability of bimanual coordination.
    Smethurst CJ; Carson RG
    J Mot Behav; 2003 Sep; 35(3):309-19. PubMed ID: 12873845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amplitude scaling in a bimanual circle-drawing task: pattern switching and end-effector variability.
    Ryu YU; Buchanan J
    J Mot Behav; 2004 Sep; 36(3):265-79. PubMed ID: 15262623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coordination disorders in patients with Parkinson's disease: a study of paced rhythmic forearm movements.
    van den Berg C; Beek PJ; Wagenaar RC; van Wieringen PC
    Exp Brain Res; 2000 Sep; 134(2):174-86. PubMed ID: 11037284
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A model of postural coordination dynamics.
    James EG
    Gait Posture; 2014 Jan; 39(1):194-7. PubMed ID: 23877034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinguishing the noise and attractor strength of coordinated limb movements using recurrence analysis.
    Richardson MJ; Schmidt RC; Kay BA
    Biol Cybern; 2007 Jan; 96(1):59-78. PubMed ID: 16953458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frequency detuning of the phase entrainment dynamics of visually coupled rhythmic movements.
    Amazeen PG; Schmidt RC; Turvey MT
    Biol Cybern; 1995; 72(6):511-8. PubMed ID: 7612722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of movement stability and congruency on the emergence of spontaneous interpersonal coordination.
    Coey C; Varlet M; Schmidt RC; Richardson MJ
    Exp Brain Res; 2011 Jun; 211(3-4):483-93. PubMed ID: 21526336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bilateral phase entrainment by movement-elicited afference contributes equally to the stability of in-phase and antiphase coordination.
    Ridderikhoff A; Peper CL; Beek PJ
    Neurosci Lett; 2006 May; 399(1-2):71-5. PubMed ID: 16472912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental coupling modulates the attractors of rhythmic coordination.
    Kudo K; Park H; Kay BA; Turvey MT
    J Exp Psychol Hum Percept Perform; 2006 Jun; 32(3):599-609. PubMed ID: 16822126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.