These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 9830705)

  • 1. Statistical model of the hippocampal CA3 region. I. The single-cell module: bursting model of the pyramidal cell.
    GrĂ³bler T; Barna G; Erdi P
    Biol Cybern; 1998 Oct; 79(4):301-8. PubMed ID: 9830705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulations of morphologically reconstructed CA3 hippocampal neurons.
    Migliore M; Cook EP; Jaffe DB; Turner DA; Johnston D
    J Neurophysiol; 1995 Mar; 73(3):1157-68. PubMed ID: 7608762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural mechanisms for generating rate and temporal codes in model CA3 pyramidal cells.
    Booth V; Bose A
    J Neurophysiol; 2001 Jun; 85(6):2432-45. PubMed ID: 11387389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Burst synchrony patterns in hippocampal pyramidal cell model networks.
    Booth V; Bose A
    Network; 2002 May; 13(2):157-77. PubMed ID: 12061418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic mechanisms underlying spontaneous CA1 neuronal firing in Ca2+-free solution.
    Shuai J; Bikson M; Hahn PJ; Lian J; Durand DM
    Biophys J; 2003 Mar; 84(3):2099-111. PubMed ID: 12609911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus.
    Saudargiene A; Cobb S; Graham BP
    Hippocampus; 2015 Feb; 25(2):208-18. PubMed ID: 25220633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study.
    Golomb D; Yue C; Yaari Y
    J Neurophysiol; 2006 Oct; 96(4):1912-26. PubMed ID: 16807352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifurcation analysis of a two-compartment hippocampal pyramidal cell model.
    Atherton LA; Prince LY; Tsaneva-Atanasova K
    J Comput Neurosci; 2016 Aug; 41(1):91-106. PubMed ID: 27221619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transitional period of Ca2+-dependent spike afterdepolarization and bursting in developing rat CA1 pyramidal cells.
    Chen S; Yue C; Yaari Y
    J Physiol; 2005 Aug; 567(Pt 1):79-93. PubMed ID: 15919718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous discharges of pyramidal cells in the dorsal hippocampus of guinea pig.
    Gao J; Sui JF; Zhu ZR; Chen PH; Wu YM
    Sheng Li Xue Bao; 2005 Apr; 57(2):181-7. PubMed ID: 15830102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified model of CA1/3 pyramidal cells: an investigation into excitability.
    Nowacki J; Osinga HM; Brown JT; Randall AD; Tsaneva-Atanasova K
    Prog Biophys Mol Biol; 2011 Mar; 105(1-2):34-48. PubMed ID: 20887748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical model of the hippocampal CA3 region II. The population framework: model of rhythmic activity in the CA3 slice.
    Barna G; GrĂ³bler T; Erdi P
    Biol Cybern; 1998 Oct; 79(4):309-21. PubMed ID: 9830706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels.
    Traub RD; Buhl EH; Gloveli T; Whittington MA
    J Neurophysiol; 2003 Feb; 89(2):909-21. PubMed ID: 12574468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic mechanisms of endogenous bursting in CA3 hippocampal pyramidal neurons: a model study.
    Xu J; Clancy CE
    PLoS One; 2008 Apr; 3(4):e2056. PubMed ID: 18446231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two forms of feedback inhibition determine the dynamical state of a small hippocampal network.
    Zeldenrust F; Wadman WJ
    Neural Netw; 2009 Oct; 22(8):1139-58. PubMed ID: 19679445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-conductance states and A-type K+ channels are potential regulators of the conductance-current balance triggered by HCN channels.
    Mishra P; Narayanan R
    J Neurophysiol; 2015 Jan; 113(1):23-43. PubMed ID: 25231614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of spike and burst rate in a minimal neuronal circuit with feed-forward inhibition.
    Zeldenrust F; Wadman WJ
    Neural Netw; 2013 Apr; 40():1-17. PubMed ID: 23376681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative evaluation of the magnetic field generated by a CA3 pyramidal cell at EPSP and action potential stages.
    Sakatani S; Hirose A
    IEEE Trans Biomed Eng; 2002 Apr; 49(4):310-9. PubMed ID: 11942722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gamma rhythmic bursts: coherence control in networks of cortical pyramidal neurons.
    Aoyagi T; Takekawa T; Fukai T
    Neural Comput; 2003 May; 15(5):1035-61. PubMed ID: 12803956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.