BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 9830981)

  • 1. Effect of cement modulus on the shear properties of the bone-cement interface.
    Funk MJ; Litsky AS
    Biomaterials; 1998 Sep; 19(17):1561-7. PubMed ID: 9830981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.
    Boger A; Bohner M; Heini P; Schwieger K; Schneider E
    Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short- and long-term effects of vertebroplastic bone cement on cancellous bone.
    Quan R; Ni Y; Zhang L; Xu J; Zheng X; Yang D
    J Mech Behav Biomed Mater; 2014 Jul; 35():102-10. PubMed ID: 24762857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic behaviour of acrylic bone cements.
    Yetkinler DN; Litsky AS
    Biomaterials; 1998 Sep; 19(17):1551-9. PubMed ID: 9830980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reduced-modulus acrylic bone cement: preliminary results.
    Litsky AS; Rose RM; Rubin CT; Thrasher EL
    J Orthop Res; 1990 Jul; 8(4):623-6. PubMed ID: 2355302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow characteristics of curing polymethyl methacrylate bone cement.
    Dunne NJ; Orr JF
    Proc Inst Mech Eng H; 1998; 212(3):199-207. PubMed ID: 9695639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical strength of the cement-bone interface is greater in shear than in tension.
    Mann KA; Werner FW; Ayers DC
    J Biomech; 1999 Nov; 32(11):1251-4. PubMed ID: 10541077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and computational models to investigate the effect of adhesion on the mechanical properties of bone-cement composites.
    Helgason B; Stirnimann P; Widmer R; Ferguson SJ
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):191-8. PubMed ID: 21714083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nondestructive measurements of implant-bone interface shear modulus and effects of implant geometry in pull-out tests.
    Berzins A; Shah B; Weinans H; Sumner DR
    J Biomed Mater Res; 1997 Mar; 34(3):337-40. PubMed ID: 9086403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone.
    Boger A; Bisig A; Bohner M; Heini P; Schneider E
    J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PMMA-based bioactive cement: effect of glass bead filler content and histological change with time.
    Shinzato S; Nakamura T; Kokubo T; Kitamura Y
    J Biomed Mater Res; 2002 Feb; 59(2):225-32. PubMed ID: 11745557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertebroplasty by use of a strontium-containing bioactive bone cement.
    Cheung KM; Lu WW; Luk KD; Wong CT; Chan D; Shen JX; Qiu GX; Zheng ZM; Li CH; Liu SL; Chan WK; Leong JC
    Spine (Phila Pa 1976); 2005 Sep; 30(17 Suppl):S84-91. PubMed ID: 16138071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive bone cements.
    Harper EJ
    Proc Inst Mech Eng H; 1998; 212(2):113-20. PubMed ID: 9612002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-mechanics of bone and bioactive bone cement interfaces in a load-bearing model.
    Ni GX; Choy YS; Lu WW; Ngan AH; Chiu KY; Li ZY; Tang B; Luk KD
    Biomaterials; 2006 Mar; 27(9):1963-70. PubMed ID: 16226309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial properties of self-reinforced composite poly(methyl methacrylate).
    Wright DD; Lautenschlager EP; Gilbert JL
    J Biomed Mater Res; 1998; 43(2):153-61. PubMed ID: 9619433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone bonding ability and handling properties of a titania-polymethylmethacrylate (PMMA) composite bioactive bone cement modified with a unique PMMA powder.
    Fukuda C; Goto K; Imamura M; Neo M; Nakamura T
    Acta Biomater; 2011 Oct; 7(10):3595-600. PubMed ID: 21704200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone.
    Arens D; Rothstock S; Windolf M; Boger A
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2081-9. PubMed ID: 22098908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.