These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9831095)

  • 1. Transcutaneous optical telemetry system with infrared laser diode.
    Inoue K; Shiba K; Shu E; Koshiji K; Tsukahara K; Oh-umi T; Masuzawa T; Tatsumi E; Taenaka Y; Takano H
    ASAIO J; 1998; 44(6):841-4. PubMed ID: 9831095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a bidirectional transcutaneous optical data transmission system for artificial hearts allowing long-distance data communication with low electric power consumption.
    Okamoto E; Yamamoto Y; Inoue Y; Makino T; Mitamura Y
    J Artif Organs; 2005; 8(3):149-53. PubMed ID: 16235031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transcutaneous optical information transmission system for implantable motor-driven artificial hearts.
    Mitamura Y; Okamoto E; Mikami T
    ASAIO Trans; 1990; 36(3):M278-80. PubMed ID: 2252677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental study on transcutaneous biotelemetry using diffused light.
    Kudo N; Shimizu K; Matsumoto G
    Front Med Biol Eng; 1988; 1(1):19-28. PubMed ID: 3153656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo performance evaluation of a transcutaneous energy and information transmission system for the total artificial heart.
    Ahn JM; Kang DW; Kim HC; Min BG
    ASAIO J; 1993; 39(3):M208-12. PubMed ID: 8268530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new transcutaneous bidirectional communication for monitoring implanted artificial heart using the human body as a conductive medium.
    Okamoto E; Kato Y; Seino K; Miura H; Shiraishi Y; Yambe T; Mitamura Y
    Artif Organs; 2012 Oct; 36(10):852-8. PubMed ID: 22812488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic study of a transcutaneous information transmission system using intra-body communication.
    Okamoto E; Sato Y; Seino K; Kiyono T; Kato Y; Mitamura Y
    J Artif Organs; 2010 Jul; 13(2):117-20. PubMed ID: 20454914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transcutaneous data telemetry system tolerant to power telemetry interference.
    Zhou M; Liu W; Wang G; Sivaprakasam M; Yuce MR; Weiland JD; Humayun MS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5884-7. PubMed ID: 17946345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical transcutaneous link for low power, high data rate telemetry.
    Liu T; Bihr U; Anis SM; Ortmanns M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3535-8. PubMed ID: 23366690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantable control, telemetry, and solar energy system in the moving actuator type total artificial heart.
    Ahn JM; Lee JH; Choi SW; Kim WE; Omn KS; Park SK; Kim WG; Roh JR; Min BG
    Artif Organs; 1998 Mar; 22(3):250-9. PubMed ID: 9527287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optical telemetry system for underwater recording of electromyogram and neuronal activity from non-tethered crayfish.
    Tsuchida Y; Hama N; Takahata M
    J Neurosci Methods; 2004 Aug; 137(1):103-9. PubMed ID: 15196832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a high speed transcutaneous optical telemetry link.
    Ackermann DM; Smith B; Kilgore KL; Peckham PH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2932-5. PubMed ID: 17946536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and evaluation of components for a totally implantable artificial heart system.
    Taenaka Y; Masuzawa T; Tatsumi F; Anai H; Toda K; Akagi H; Nakatani T; Baba Y; Fya K; Wakisaka Y
    ASAIO J; 1994; 40(3):M314-8. PubMed ID: 8555531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of unifying transcutaneous transformer for transmission of energy and information.
    Tamura N; Yamamoto T; Aoki H; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2009; 12(2):138-40. PubMed ID: 19536632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcutaneous communication system using the human body as conductive medium: influence of transmission data current on the heart.
    Okamoto E; Kikuchi S; Miura H; Shiraishi Y; Yambe T; Mitamura Y
    Biomed Mater Eng; 2013; 23(1-2):155-62. PubMed ID: 23442245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.
    Lin GR; Chi YC; Liao YS; Kuo HC; Liao ZW; Wang HL; Lin GC
    Opt Express; 2012 Jun; 20(13):13622-35. PubMed ID: 22714427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiberoptic transmission of biological signals.
    Werneck MM; Barrientos EM
    Med Prog Technol; 1994; 20(1-2):59-62. PubMed ID: 7968867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges.
    Hannan MA; Hussein HA; Mutashar S; Samad SA; Hussain A
    Sensors (Basel); 2014 Dec; 14(12):23843-70. PubMed ID: 25615728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wireless front-end with power management for an implantable cardiac microstimulator.
    Lee SY; Hsieh CH; Yang CM
    IEEE Trans Biomed Circuits Syst; 2012 Feb; 6(1):28-38. PubMed ID: 23852742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A power and data link for a wireless-implanted neural recording system.
    Rush AD; Troyk PR
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3255-62. PubMed ID: 22922687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.