These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 9831494)
41. Acetone photolysis at 248 nm revisited: pressure dependence of the CO and CO2 quantum yields. Somnitz H; Ufer T; Zellner R Phys Chem Chem Phys; 2009 Oct; 11(38):8522-31. PubMed ID: 19774283 [TBL] [Abstract][Full Text] [Related]
42. Analysis of O2-Broadening of 12CH3F Lines in the 6.8-µm Spectral Region. Lepère M; Blanquet G; Walrand J; Bouanich JP J Mol Spectrosc; 1998 Nov; 192(1):17-24. PubMed ID: 9770383 [TBL] [Abstract][Full Text] [Related]
43. Intensity Measurements and Collision-Broadening Coefficients for the Oxygen A Band Measured by Intracavity Laser Absorption Spectroscopy. Yang S; Canagaratna MR; Witonsky SK; Coy SL; Steinfeld JI; Field RW; Kachanov AA J Mol Spectrosc; 2000 Jun; 201(2):188-197. PubMed ID: 10814483 [TBL] [Abstract][Full Text] [Related]
44. Measurements of CO(2) concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7 microm. Farooq A; Jeffries JB; Hanson RK Appl Opt; 2009 Dec; 48(35):6740-53. PubMed ID: 20011014 [TBL] [Abstract][Full Text] [Related]
45. Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm(-1). Montgomery GP Appl Opt; 1978 Aug; 17(15):2299-303. PubMed ID: 20203777 [TBL] [Abstract][Full Text] [Related]
46. Direct measurements of collisional Raman line broadening in the S-branch transitions of CO perturbed by CO, N Hsu PS; Stauffer HU; Jiang N; Gord JR; Roy S Appl Opt; 2019 Apr; 58(10):C1-C6. PubMed ID: 31045024 [TBL] [Abstract][Full Text] [Related]
47. Temperature dependence of the self-broadening coefficients for the fundamental band of carbon monoxide. Sun JN; Griffiths PR Appl Opt; 1981 May; 20(9):1691-5. PubMed ID: 20309370 [TBL] [Abstract][Full Text] [Related]
48. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Li H; Rieker GB; Liu X; Jeffries JB; Hanson RK Appl Opt; 2006 Feb; 45(5):1052-61. PubMed ID: 16512549 [TBL] [Abstract][Full Text] [Related]
49. Semi-classical calculations of self-broadening coefficients of OCS and HCN at temperatures between 200 K and 298 K. Jellali C; Galalou S; Cuisset A; Dhib M; Aroui H J Mol Spectrosc; 2016 Nov; 329():35-42. PubMed ID: 27812224 [TBL] [Abstract][Full Text] [Related]
50. High-Resolution Measurements of HBr Transitions in the First Overtone Band Using Tunable Diode Lasers. Chou SI; Baer DS; Hanson RK J Mol Spectrosc; 2000 Mar; 200(1):138-142. PubMed ID: 10662585 [TBL] [Abstract][Full Text] [Related]
51. The temperature and pressure dependence of the reactions H + O2 (+M) --> HO2 (+M) and H + OH (+M) --> H2O (+M). Sellevåg SR; Georgievskii Y; Miller JA J Phys Chem A; 2008 Jun; 112(23):5085-95. PubMed ID: 18491883 [TBL] [Abstract][Full Text] [Related]
52. Accurate calculated tabulations of IR and Raman CO(2) line broadening by CO(2), H2O, N(2), O(2) in the 300-2400-K temperature range. Rosenmann L; Hartmann JM; Perrin MY; Taine J Appl Opt; 1988 Sep; 27(18):3902-6. PubMed ID: 20539486 [TBL] [Abstract][Full Text] [Related]
53. Measurements of pressure-broadening coefficients of NO and O3 using a computerized tunable diode laser spectrometer. Lundqvist S; Margolis J; Reid J Appl Opt; 1982 Sep; 21(17):3109-13. PubMed ID: 20396185 [TBL] [Abstract][Full Text] [Related]
54. Calculated Half-Widths and Line Shifts of Water Vapor Transitions in the 0.7-&mgr;m Region and a Comparison with Published Data. Gamache RR; Fischer J J Mol Spectrosc; 2001 Jun; 207(2):254-262. PubMed ID: 11397114 [TBL] [Abstract][Full Text] [Related]
55. Detection and spectroscopy of the v1 + v3 band of N2O by difference-frequency spectrometer at 3 microm. Bruno A; Pesce G; Rusciano G; Sasso A Spectrochim Acta A Mol Biomol Spectrosc; 2002 Sep; 58(11):2481-8. PubMed ID: 12353698 [TBL] [Abstract][Full Text] [Related]
56. Line mixing effects in isotropic Raman spectra of pure N2: a classical trajectory study. Ivanov SV; Boulet C; Buzykin OG; Thibault F J Chem Phys; 2014 Nov; 141(18):184306. PubMed ID: 25399146 [TBL] [Abstract][Full Text] [Related]
57. Linewidth measurements in the thermal infrared bands of (12)CH(3)D at planetary atmospheric temperatures. Varanasi P; Chudamani S Appl Opt; 1989 Jun; 28(11):2119-22. PubMed ID: 20555477 [TBL] [Abstract][Full Text] [Related]
58. Quantitative absorption spectroscopy of residual water vapor in high-purity gases: pressure broadening of the 1.39253-microm H2O transition by N2, HCl, HBr, Cl2, and O2. Vorsa V; Dheandhanoo S; Ketkar SN; Hodges JT Appl Opt; 2005 Feb; 44(4):611-9. PubMed ID: 15726959 [TBL] [Abstract][Full Text] [Related]
59. Fully quantum calculations of the line shape parameters for 1-0 P(22) and P(31) lines of CO perturbed by He or Ar. Chai S; Chen Q; Yang D; Zhou Y; Xie D J Chem Phys; 2022 Dec; 157(22):224301. PubMed ID: 36546801 [TBL] [Abstract][Full Text] [Related]
60. Absorption line shift with temperature and pressure: impact on laser-diode-based H2O sensing at 1.393 microm. Phelan R; Lynch M; Donegan JF; Weldon V Appl Opt; 2003 Aug; 42(24):4968-74. PubMed ID: 12952345 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]