These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

657 related articles for article (PubMed ID: 9831724)

  • 1. Cellular mechanisms by which adenosine induces vasodilatation in rat skeletal muscle: significance for systemic hypoxia.
    Bryan PT; Marshall JM
    J Physiol; 1999 Jan; 514 ( Pt 1)(Pt 1):163-75. PubMed ID: 9831724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine receptor subtypes and vasodilatation in rat skeletal muscle during systemic hypoxia: a role for A1 receptors.
    Bryan PT; Marshall JM
    J Physiol; 1999 Jan; 514 ( Pt 1)(Pt 1):151-62. PubMed ID: 9831723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the roles of ATP, adenosine and nitric oxide in mediating muscle vasodilatation induced in the rat by acute systemic hypoxia.
    Skinner MR; Marshall JM
    J Physiol; 1996 Sep; 495 ( Pt 2)(Pt 2):553-60. PubMed ID: 8887765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-dependent protein kinase.
    Kleppisch T; Nelson MT
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12441-5. PubMed ID: 8618917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pH on responses to adenosine, CGS 21680, carbachol and nitroprusside in the isolated perfused superior mesenteric arterial bed of the rat.
    Hiley CR; Bottrill FE; Warnock J; Richardson PJ
    Br J Pharmacol; 1995 Nov; 116(6):2641-6. PubMed ID: 8590983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vasodilatation, oxygen delivery and oxygen consumption in rat hindlimb during systemic hypoxia: roles of nitric oxide.
    Edmunds NJ; Marshall JM
    J Physiol; 2001 Apr; 532(Pt 1):251-9. PubMed ID: 11283239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of adenosine and its receptors in the vasodilatation induced in the cerebral cortex of the rat by systemic hypoxia.
    Coney AM; Marshall JM
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):507-18. PubMed ID: 9575299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen delivery and oxygen consumption in rat hindlimb during systemic hypoxia: role of adenosine.
    Edmunds NJ; Marshall JM
    J Physiol; 2001 Nov; 536(Pt 3):927-35. PubMed ID: 11691884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine A(2A) receptors mediate coronary microvascular dilation to adenosine: role of nitric oxide and ATP-sensitive potassium channels.
    Hein TW; Belardinelli L; Kuo L
    J Pharmacol Exp Ther; 1999 Nov; 291(2):655-64. PubMed ID: 10525085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The endothelium of the rat renal artery plays an obligatory role in A2 adenosine receptor-mediated relaxation induced by 5'-N-ethylcarboxamidoadenosine and N6-cyclopentyladenosine.
    Martin PL; Potts AA
    J Pharmacol Exp Ther; 1994 Sep; 270(3):893-9. PubMed ID: 7932201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of adenosine and ATP-sensitive potassium channels in the protection afforded by ischemic preconditioning against the post-ischemic endothelial dysfunction in guinea-pig hearts.
    Maczewski M; Beresewicz A
    J Mol Cell Cardiol; 1998 Sep; 30(9):1735-47. PubMed ID: 9769229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does nitric oxide allow endothelial cells to sense hypoxia and mediate hypoxic vasodilatation? In vivo and in vitro studies.
    Edmunds NJ; Moncada S; Marshall JM
    J Physiol; 2003 Jan; 546(Pt 2):521-7. PubMed ID: 12527738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine-induced vasodilation: receptor characterization in pulmonary circulation.
    Haynes J; Obiako B; Thompson WJ; Downey J
    Am J Physiol; 1995 May; 268(5 Pt 2):H1862-8. PubMed ID: 7771537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of nitric oxide release evoked by systemic hypoxia and adenosine from rat skeletal muscle in vivo.
    Ray CJ; Marshall JM
    J Physiol; 2005 Nov; 568(Pt 3):967-78. PubMed ID: 16123106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiating effect of nicorandil on the adenosine A2 receptor-mediated vasodepression in rats: potential role for KATP channels.
    Saito K; Sakai K
    Fundam Clin Pharmacol; 1998; 12(2):143-51. PubMed ID: 9565767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A xanthine-based KMUP-1 with cyclic GMP enhancing and K(+) channels opening activities in rat aortic smooth muscle.
    Wu BN; Lin RJ; Lin CY; Shen KP; Chiang LC; Chen IJ
    Br J Pharmacol; 2001 Sep; 134(2):265-74. PubMed ID: 11564644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of P1-(A2b subtype) and P2-purinoceptors to the control of vascular tone in the rat isolated mesenteric arterial bed.
    Rubino A; Ralevic V; Burnstock G
    Br J Pharmacol; 1995 Jun; 115(4):648-52. PubMed ID: 7582485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KATP channels contribute to beta- and adenosine receptor-mediated pulmonary vasorelaxation.
    Sheridan BC; McIntyre RC; Meldrum DR; Fullerton DA
    Am J Physiol; 1997 Nov; 273(5):L950-6. PubMed ID: 9374721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A link between adenosine, ATP-sensitive K+ channels, potassium and muscle vasodilatation in the rat in systemic hypoxia.
    Marshall JM; Thomas T; Turner L
    J Physiol; 1993 Dec; 472():1-9. PubMed ID: 8145135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of coronary vascular adenosine receptors in the mouse.
    Flood A; Headrick JP
    Br J Pharmacol; 2001 Aug; 133(7):1063-72. PubMed ID: 11487517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.