BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9832137)

  • 1. Effects of oxidants and glutamate receptor activation on mitochondrial membrane potential in rat forebrain neurons.
    Scanlon JM; Reynolds IJ
    J Neurochem; 1998 Dec; 71(6):2392-400. PubMed ID: 9832137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure.
    White RJ; Reynolds IJ
    J Neurosci; 1996 Sep; 16(18):5688-97. PubMed ID: 8795624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkalinization prolongs recovery from glutamate-induced increases in intracellular Ca2+ concentration by enhancing Ca2+ efflux through the mitochondrial Na+/Ca2+ exchanger in cultured rat forebrain neurons.
    Hoyt KR; Reynolds IJ
    J Neurochem; 1998 Sep; 71(3):1051-8. PubMed ID: 9721729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MitoTracker labeling in primary neuronal and astrocytic cultures: influence of mitochondrial membrane potential and oxidants.
    Buckman JF; Hernández H; Kress GJ; Votyakova TV; Pal S; Reynolds IJ
    J Neurosci Methods; 2001 Jan; 104(2):165-76. PubMed ID: 11164242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trifluoperazine and dibucaine-induced inhibition of glutamate-induced mitochondrial depolarization in rat cultured forebrain neurones.
    Hoyt KR; Sharma TA; Reynolds IJ
    Br J Pharmacol; 1997 Nov; 122(5):803-8. PubMed ID: 9384493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of glutamate-induced mitochondrial depolarization by tamoxifen in cultured neurons.
    Hoyt KR; McLaughlin BA; Higgins DS; Reynolds IJ
    J Pharmacol Exp Ther; 2000 May; 293(2):480-6. PubMed ID: 10773018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation.
    Reynolds IJ; Hastings TG
    J Neurosci; 1995 May; 15(5 Pt 1):3318-27. PubMed ID: 7751912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons.
    Almeida A; Bolaños JP
    J Neurochem; 2001 Apr; 77(2):676-90. PubMed ID: 11299330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane depolarization of isolated rat liver mitochondria attenuates permeability transition pore opening and oxidant production.
    Aronis A; Komarnitsky R; Shilo S; Tirosh O
    Antioxid Redox Signal; 2002 Aug; 4(4):647-54. PubMed ID: 12230877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx.
    Urushitani M; Nakamizo T; Inoue R; Sawada H; Kihara T; Honda K; Akaike A; Shimohama S
    J Neurosci Res; 2001 Mar; 63(5):377-87. PubMed ID: 11223912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in mitochondrial membrane potential during oxidative stress-induced apoptosis in PC12 cells.
    Satoh T; Enokido Y; Aoshima H; Uchiyama Y; Hatanaka H
    J Neurosci Res; 1997 Nov; 50(3):413-20. PubMed ID: 9364326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons.
    Wang GJ; Thayer SA
    J Neurophysiol; 1996 Sep; 76(3):1611-21. PubMed ID: 8890280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of intracellular Na+ and mitochondria in buffering of kainate-induced intracellular free Ca2+ changes in rat forebrain neurones.
    Hoyt KR; Stout AK; Cardman JM; Reynolds IJ
    J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):103-16. PubMed ID: 9547385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity.
    Schinder AF; Olson EC; Spitzer NC; Montal M
    J Neurosci; 1996 Oct; 16(19):6125-33. PubMed ID: 8815895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depolarization of in situ mitochondria due to hydrogen peroxide-induced oxidative stress in nerve terminals: inhibition of alpha-ketoglutarate dehydrogenase.
    Chinopoulos C; Tretter L; Adam-Vizi V
    J Neurochem; 1999 Jul; 73(1):220-8. PubMed ID: 10386974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The leading role of mitochondrial depolarization in the mechanism of glutamate-induced disruptions in Ca2+ homeostasis.
    Khodorov BI; Storozhevykh TP; Surin AM; Yuryavichyus AI; Sorokina EG; Borodin AV; Vinskaya NP; Khaspekov LG; Pinelis VG
    Neurosci Behav Physiol; 2002; 32(5):541-7. PubMed ID: 12403008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells.
    Wyatt CN; Buckler KJ
    J Physiol; 2004 Apr; 556(Pt 1):175-91. PubMed ID: 14724184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate decreases mitochondrial size and movement in primary forebrain neurons.
    Rintoul GL; Filiano AJ; Brocard JB; Kress GJ; Reynolds IJ
    J Neurosci; 2003 Aug; 23(21):7881-8. PubMed ID: 12944518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse Na+/Ca2+ exchange contributes to glutamate-induced intracellular Ca2+ concentration increases in cultured rat forebrain neurons.
    Hoyt KR; Arden SR; Aizenman E; Reynolds IJ
    Mol Pharmacol; 1998 Apr; 53(4):742-9. PubMed ID: 9547366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells.
    Budd SL; Castilho RF; Nicholls DG
    FEBS Lett; 1997 Sep; 415(1):21-4. PubMed ID: 9326361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.