These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 9832158)
1. Excitotoxin-induced neuronal death is associated with response of a unique intracellular aspartic proteinase, cathepsin E. Tominaga K; Nakanishi H; Yasuda Y; Yamamoto K J Neurochem; 1998 Dec; 71(6):2574-84. PubMed ID: 9832158 [TBL] [Abstract][Full Text] [Related]
2. Kainic acid-activated microglia mediate increased excitability of rat hippocampal neurons in vitro and in vivo: crucial role of interleukin-1beta. Zheng H; Zhu W; Zhao H; Wang X; Wang W; Li Z Neuroimmunomodulation; 2010; 17(1):31-8. PubMed ID: 19816055 [TBL] [Abstract][Full Text] [Related]
4. Differential postreceptor signaling events triggered by excitotoxic stimulation of different ionotropic glutamate receptors in retinal neurons. Santos AE; Carvalho AL; Lopes MC; Carvalho AP J Neurosci Res; 2001 Nov; 66(4):643-55. PubMed ID: 11746384 [TBL] [Abstract][Full Text] [Related]
5. Chemokine CX3CL1 protects rat hippocampal neurons against glutamate-mediated excitotoxicity. Limatola C; Lauro C; Catalano M; Ciotti MT; Bertollini C; Di Angelantonio S; Ragozzino D; Eusebi F J Neuroimmunol; 2005 Sep; 166(1-2):19-28. PubMed ID: 16019082 [TBL] [Abstract][Full Text] [Related]
6. Susceptibilities to and mechanisms of excitotoxic cell death of adult mouse inner retinal neurons in dissociated culture. Luo X; Baba A; Matsuda T; Romano C Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4576-82. PubMed ID: 15557470 [TBL] [Abstract][Full Text] [Related]
8. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures. Kristensen BW; Noraberg J; Zimmer J Brain Res; 2001 Oct; 917(1):21-44. PubMed ID: 11602227 [TBL] [Abstract][Full Text] [Related]
9. Role of kainate receptor activation and desensitization on the [Ca(2+)](i) changes in cultured rat hippocampal neurons. Silva AP; Malva JO; Ambrósio AF; Salgado AJ; Carvalho AP; Carvalho CM J Neurosci Res; 2001 Sep; 65(5):378-86. PubMed ID: 11536320 [TBL] [Abstract][Full Text] [Related]
10. Involvement of cyclin-dependent kinase-5 in the kainic acid-mediated degeneration of glutamatergic synapses in the rat hippocampus. Putkonen N; Kukkonen JP; Mudo G; Putula J; Belluardo N; Lindholm D; Korhonen L Eur J Neurosci; 2011 Oct; 34(8):1212-21. PubMed ID: 21978141 [TBL] [Abstract][Full Text] [Related]
11. Expression and localisation of brain-type organic cation transporter (BOCT/24p3R/LCN2R) in the normal rat hippocampus and after kainate-induced excitotoxicity. Chia WJ; Tan FC; Ong WY; Dawe GS Neurochem Int; 2015 Aug; 87():43-59. PubMed ID: 26004810 [TBL] [Abstract][Full Text] [Related]
12. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx. Urushitani M; Nakamizo T; Inoue R; Sawada H; Kihara T; Honda K; Akaike A; Shimohama S J Neurosci Res; 2001 Mar; 63(5):377-87. PubMed ID: 11223912 [TBL] [Abstract][Full Text] [Related]
13. Intracellular survival pathways against glutamate receptor agonist excitotoxicity in cultured neurons. Intracellular calcium responses. Marini AM; Ueda Y; June CH Ann N Y Acad Sci; 1999; 890():421-37. PubMed ID: 10668447 [TBL] [Abstract][Full Text] [Related]
14. In vivo role of caspases in excitotoxic neuronal death: generation and analysis of transgenic mice expressing baculoviral caspase inhibitor, p35, in postnatal neurons. Tomioka M; Shirotani K; Iwata N; Lee HJ; Yang F; Cole GM; Seyama Y; Saido TC Brain Res Mol Brain Res; 2002 Dec; 108(1-2):18-32. PubMed ID: 12480175 [TBL] [Abstract][Full Text] [Related]
15. Induction of tumour-suppressor phosphoprotein p53 in the apoptosis of cultured rat cerebellar neurones triggered by excitatory amino acids. Uberti D; Belloni M; Grilli M; Spano P; Memo M Eur J Neurosci; 1998 Jan; 10(1):246-54. PubMed ID: 9753133 [TBL] [Abstract][Full Text] [Related]
16. Lack of the p50 subunit of nuclear factor-kappaB increases the vulnerability of hippocampal neurons to excitotoxic injury. Yu Z; Zhou D; Bruce-Keller AJ; Kindy MS; Mattson MP J Neurosci; 1999 Oct; 19(20):8856-65. PubMed ID: 10516305 [TBL] [Abstract][Full Text] [Related]
17. Kainic acid-induced excitotoxicity is associated with a complex c-Fos and c-Jun response which does not preclude either cell death or survival. Pozas E; Ballabriga J; Planas AM; Ferrer I J Neurobiol; 1997 Sep; 33(3):232-46. PubMed ID: 9298762 [TBL] [Abstract][Full Text] [Related]
18. The ketogenic diet suppresses the cathepsin E expression induced by kainic acid in the rat brain. Jeong HJ; Kim H; Kim YK; Park SK; Kang DW; Yoon D Yonsei Med J; 2010 Sep; 51(5):653-60. PubMed ID: 20635438 [TBL] [Abstract][Full Text] [Related]
19. Real-time imaging of intrinsic optical signals during early excitotoxicity evoked by domoic acid in the rat hippocampal slice. Polischuk TM; Andrew RD Can J Physiol Pharmacol; 1996 Jun; 74(6):712-22. PubMed ID: 8909784 [TBL] [Abstract][Full Text] [Related]
20. Polyamine metabolism and glutamate receptor agonists-mediated excitotoxicity in the rat brain. Camón L; de Vera N; Martínez E J Neurosci Res; 2001 Dec; 66(6):1101-11. PubMed ID: 11746442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]