BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9832232)

  • 1. Neurorespiratory pattern of gill and lung ventilation in the decerebrate spontaneously breathing tadpole.
    Gdovin MJ; Torgerson CS; Remmers JE
    Respir Physiol; 1998 Aug; 113(2):135-46. PubMed ID: 9832232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fictive gill and lung ventilation in the pre- and postmetamorphic tadpole brain stem.
    Torgerson CS; Gdovin MJ; Remmers JE
    J Neurophysiol; 1998 Oct; 80(4):2015-22. PubMed ID: 9772257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fictively breathing tadpole brainstem preparation as a model for the development of respiratory pattern generation and central chemoreception.
    Gdovin MJ; Torgerson CS; Remmers JE
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Nov; 124(3):275-86. PubMed ID: 10665380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural organization of the ventilatory activity in the frog, Rana catesbeiana. I.
    Kogo N; Perry SF; Remmers JE
    J Neurobiol; 1994 Sep; 25(9):1067-79. PubMed ID: 7815064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the respiratory response to hypoxia in the isolated brainstem of the bullfrog Rana catesbeiana.
    Winmill RE; Chen AK; Hedrick MS
    J Exp Biol; 2005 Jan; 208(Pt 2):213-22. PubMed ID: 15634841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ontogeny of central chemoreception during fictive gill and lung ventilation in an in vitro brainstem preparation of Rana catesbeiana.
    Torgerson C; Gdovin M; Remmers J
    J Exp Biol; 1997; 200(Pt 15):2063-72. PubMed ID: 9319973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gill and lung ventilation responses to steady-state aquatic hypoxia and hyperoxia in the bullfrog tadpole.
    West NH; Burggren WW
    Respir Physiol; 1982 Feb; 47(2):165-76. PubMed ID: 6978506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of prevention of lung inflation on metamorphosis and respiration in the developing bullfrog tadpole, Rana catesbeiana.
    Gdovin MJ; Jackson VV; Zamora DA; Leiter JC
    J Exp Zool A Comp Exp Biol; 2006 Apr; 305(4):335-47. PubMed ID: 16493648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes in the modulation of respiratory rhythm generation by extracellular K+ in the isolated bullfrog brainstem.
    Winmill RE; Hedrick MS
    J Neurobiol; 2003 Jun; 55(3):278-87. PubMed ID: 12717698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory activity in the facial nucleus in an in vitro brainstem of tadpole, Rana catesbeiana.
    Liao G-S ; Kubin L; Galante RJ; Fishman AP; Pack AI
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):529-44. PubMed ID: 9019548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the respiratory central pattern generator by chloride-dependent inhibition during development in the bullfrog (Rana catesbeiana).
    Broch L; Morales RD; Sandoval AV; Hedrick MS
    J Exp Biol; 2002 Apr; 205(Pt 8):1161-9. PubMed ID: 11919275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent augmentation of fictive air breathing by hypoxia: An in vitro study of the role of GABA
    Janes TA; Guay LM; Fournier S; Kinkead R
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Jul; 281():111437. PubMed ID: 37088410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central nervous control of gill filament muscles in channel catfish.
    Burleson ML; Smith RL
    Respir Physiol; 2001 Jun; 126(2):103-12. PubMed ID: 11348638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of chloride-mediated inhibition in respiratory rhythmogenesis in an in vitro brainstem of tadpole, Rana catesbeiana.
    Galante RJ; Kubin L; Fishman AP; Pack AI
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):545-58. PubMed ID: 9019549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrabranchial chemoreceptors involved in respiratory reflexes in the neotropical fish Colossoma macropomum (the tambaqui).
    Milsom WK; Reid SG; Rantin FT; Sundin L
    J Exp Biol; 2002 Jun; 205(Pt 12):1765-74. PubMed ID: 12042335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermittent hypoxia and plasticity of respiratory chemoreflexes in metamorphic bullfrog tadpoles.
    Simard E; Trépanier G; Larochelle J; Kinkead R
    Respir Physiol Neurobiol; 2003 Apr; 135(1):59-72. PubMed ID: 12706066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional morphology of feeding and gill irrigation in the anuran tadpole: electromyography and muscle function in larval Rana catesbeiana.
    Larson PM; Reilly SM
    J Morphol; 2003 Feb; 255(2):202-14. PubMed ID: 12474266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide changes its role as a modulator of respiratory motor activity during development in the bullfrog (Rana catesbeiana).
    Hedrick MS; Chen AK; Jessop KL
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):231-40. PubMed ID: 16023875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural organization of the ventilatory activity in the frog, Rana catesbeiana. II.
    Kogo N; Remmers JE
    J Neurobiol; 1994 Sep; 25(9):1080-94. PubMed ID: 7815065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central Hypoxia Elicits Long-Term Expression of the Lung Motor Pattern in Pre-metamorphic Lithobates Catesbeianus.
    Janes TA; Kinkead R
    Adv Exp Med Biol; 2018; 1071():75-82. PubMed ID: 30357736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.