These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 9832308)
41. Substrate and inhibitor studies of thermolysin-like neutral metalloendopeptidase from kidney membrane fractions. Comparison with bacterial thermolysin. Pozsgay M; Michaud C; Liebman M; Orlowski M Biochemistry; 1986 Mar; 25(6):1292-9. PubMed ID: 3516218 [TBL] [Abstract][Full Text] [Related]
42. Kinetics of enzymatic synthesis of peptides in aqueous/organic biphasic systems. Thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-phenylalanyl-L-phenylalanine methyl ester. Nakanishi K; Matsuno R Eur J Biochem; 1986 Dec; 161(3):533-40. PubMed ID: 3792307 [TBL] [Abstract][Full Text] [Related]
43. Effect of electron withdrawing substituents on substrate hydrolysis by and inhibition of rat neutral endopeptidase 24.11 (enkephalinase) and thermolysin. Bateman RC; Rodriguez G; Vijayaraghavan J; Hersh LB Arch Biochem Biophys; 1990 Jun; 279(2):355-62. PubMed ID: 2350181 [TBL] [Abstract][Full Text] [Related]
44. Biotransformation of [(12)C]- and [(13)C]-tert-amyl methyl ether and tert-amyl alcohol. Amberg A; Bernauer U; Scheutzow D; Dekant W Chem Res Toxicol; 1999 Oct; 12(10):958-64. PubMed ID: 10525272 [TBL] [Abstract][Full Text] [Related]
45. Lipoconjugates: structure-activity studies for pheromone analogues of Ustilago maydis with varied lipophilicity. Koppitz M; Spellig T; Kahmann R; Kessler H Int J Pept Protein Res; 1996 Oct; 48(4):377-90. PubMed ID: 8919059 [TBL] [Abstract][Full Text] [Related]
46. Effects of normal and their branched alcohols with structurally minimal variation on kinetic parameters in thermolysin-catalyzed peptide hydrolysis and synthesis of N-(benzyloxycarbonyl)-L-phenylalanyl-L-phenylalanine and its methyl ester. Inagaki T; Tadasa K; Kayahara H Biosci Biotechnol Biochem; 1995 Mar; 59(3):535-7. PubMed ID: 7766199 [TBL] [Abstract][Full Text] [Related]
47. Limited proteolysis of ribonuclease A with thermolysin in trifluoroethanol. Polverino de Laureto P; Scaramella E; De Filippis V; Bruix M; Rico M; Fontana A Protein Sci; 1997 Apr; 6(4):860-72. PubMed ID: 9098896 [TBL] [Abstract][Full Text] [Related]
49. Side reactions in enzymatic peptide synthesis in organic media: effects of enzyme, solvent, and substrate concentrations. Gololobov MYu ; Stepanov VM; Voyushina TL; Morozova IP; Adlercreutz P Enzyme Microb Technol; 1994 Jun; 16(6):522-8. PubMed ID: 7764892 [TBL] [Abstract][Full Text] [Related]
50. Synthesis and conformational studies of peptides encompassing the carboxy-terminal helix of thermolysin. Vita C; Dalzoppo D; De Filippis V; Longhi R; Manera E; Pucci P; Fontana A Int J Pept Protein Res; 1990 May; 35(5):396-405. PubMed ID: 2376465 [TBL] [Abstract][Full Text] [Related]
51. Peptide synthesis of aspartame precursor using organic-solvent-stable PST-01 protease in monophasic aqueous-organic solvent systems. Tsuchiyama S; Doukyu N; Yasuda M; Ishimi K; Ogino H Biotechnol Prog; 2007; 23(4):820-3. PubMed ID: 17480054 [TBL] [Abstract][Full Text] [Related]
52. Kinetic analysis for synthesis of a dipeptide precursor using an immobilized enzyme in water-immiscible organic solvents. Miyanaga M; Imamura K; Sakiyama T; Nakanishi K J Biosci Bioeng; 2000; 90(1):112-4. PubMed ID: 16232827 [TBL] [Abstract][Full Text] [Related]
53. The influence of water on protease-catalyzed peptide synthesis in acetonitrile/water mixtures. Reslow M; Adlercreutz P; Mattiasson B Eur J Biochem; 1988 Nov; 177(2):313-8. PubMed ID: 3056721 [TBL] [Abstract][Full Text] [Related]
54. Reaction mechanism, specificity and pH-dependence of peptide synthesis catalyzed by the metalloproteinase thermolysin. Riechmann L; Kasche V Biochim Biophys Acta; 1986 Aug; 872(3):269-76. PubMed ID: 3730402 [TBL] [Abstract][Full Text] [Related]
55. Nucleophile specificity of subtilisin in an organic solvent with low water content: investigation via acyl transfer reactions. Cerovský V; Jakubke HD Biotechnol Bioeng; 1996 Mar; 49(5):553-8. PubMed ID: 18623617 [TBL] [Abstract][Full Text] [Related]
56. Role of the S' subsites in serine protease catalysis. Active-site mapping of rat chymotrypsin, rat trypsin, alpha-lytic protease, and cercarial protease from Schistosoma mansoni. Schellenberger V; Turck CW; Rutter WJ Biochemistry; 1994 Apr; 33(14):4251-7. PubMed ID: 8155642 [TBL] [Abstract][Full Text] [Related]
57. Conformation and sweet tastes of L-aspartyl dipeptide methyl esters. Kim YJ; Han SJ; Kim SC; Kang YK Biopolymers; 1994 Aug; 34(8):1037-48. PubMed ID: 8075386 [TBL] [Abstract][Full Text] [Related]
58. Insights into the catalytic roles of the polypeptide regions in the active site of thermolysin and generation of the thermolysin variants with high activity and stability. Kusano M; Yasukawa K; Inouye K J Biochem; 2009 Jan; 145(1):103-13. PubMed ID: 18974160 [TBL] [Abstract][Full Text] [Related]
59. Alcalase-catalyzed, kinetically controlled synthesis of a precursor dipeptide of RGDS in organic solvents. Hou RZ; Yang Y; Huang YB; Wang H; Zhang N; Liu YJ; Zhang XZ; Li G Prep Biochem Biotechnol; 2006; 36(1):93-105. PubMed ID: 16428141 [TBL] [Abstract][Full Text] [Related]
60. Continuous synthesis of a tripeptide by successive condensation and transesterification catalyzed by two immobilized proteinases in organic solvent. Kimura Y; Yoshida T; Muraya K; Nakanishi K; Matsuno R Agric Biol Chem; 1990 Jun; 54(6):1433-40. PubMed ID: 1368563 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]