BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 9832515)

  • 1. A genetic study of signaling processes for repression of PHO5 transcription in Saccharomyces cerevisiae.
    Lau WW; Schneider KR; O'Shea EK
    Genetics; 1998 Dec; 150(4):1349-59. PubMed ID: 9832515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic analysis of suppressor mutants of a pho84 disruptant in the search for genes involved in intracellular inorganic phosphate sensing in Saccharomyces cerevisiae.
    Sasano Y; Sakata T; Okusaki S; Sugiyama M; Kaneko Y; Harashima S
    Genes Genet Syst; 2018 Dec; 93(5):199-207. PubMed ID: 30449767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function of hybrid human-yeast cyclin-dependent kinases in Saccharomyces cerevisiae.
    Bitter GA
    Mol Gen Genet; 1998 Oct; 260(1):120-30. PubMed ID: 9829836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic high-throughput screen of a yeast deletion collection for mutants defective in PHO5 regulation.
    Huang S; O'Shea EK
    Genetics; 2005 Apr; 169(4):1859-71. PubMed ID: 15695358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A putative membrane protein, Pho88p, involved in inorganic phosphate transport in Saccharomyces cerevisiae.
    Yompakdee C; Ogawa N; Harashima S; Oshima Y
    Mol Gen Genet; 1996 Jul; 251(5):580-90. PubMed ID: 8709965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription of some PHO genes in Saccharomyces cerevisiae is regulated by spt7p.
    Nishimura K; Yasumura K; Igarashi K; Harashima S; Kakinuma Y
    Yeast; 1999 Dec; 15(16):1711-7. PubMed ID: 10590460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A putative new membrane protein, Pho86p, in the inorganic phosphate uptake system of Saccharomyces cerevisiae.
    Yompakdee C; Bun-ya M; Shikata K; Ogawa N; Harashima S; Oshima Y
    Gene; 1996 May; 171(1):41-7. PubMed ID: 8675028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of mutations affecting expression of the delta9- fatty acid desaturase gene, OLE1, in Saccharomyces cerevisiae.
    Fujimori K; Anamnart S; Nakagawa Y; Sugioka S; Ohta D; Oshima Y; Yamada Y; Harashima S
    FEBS Lett; 1997 Aug; 413(2):226-30. PubMed ID: 9280286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae.
    Auesukaree C; Tochio H; Shirakawa M; Kaneko Y; Harashima S
    J Biol Chem; 2005 Jul; 280(26):25127-33. PubMed ID: 15866881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter.
    Bun-Ya M; Nishimura M; Harashima S; Oshima Y
    Mol Cell Biol; 1991 Jun; 11(6):3229-38. PubMed ID: 2038328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion tolerance of Saccharomyces cerevisiae lacking the Ca2+/CaM-dependent phosphatase (calcineurin) is improved by mutations in URE2 or PMA1.
    Withee JL; Sen R; Cyert MS
    Genetics; 1998 Jun; 149(2):865-78. PubMed ID: 9611198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae.
    Auesukaree C; Homma T; Tochio H; Shirakawa M; Kaneko Y; Harashima S
    J Biol Chem; 2004 Apr; 279(17):17289-94. PubMed ID: 14966138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling phosphate homeostasis to cell cycle-specific transcription: mitotic activation of Saccharomyces cerevisiae PHO5 by Mcm1 and Forkhead proteins.
    Pondugula S; Neef DW; Voth WP; Darst RP; Dhasarathy A; Reynolds MM; Takahata S; Stillman DJ; Kladde MP
    Mol Cell Biol; 2009 Sep; 29(18):4891-905. PubMed ID: 19596791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the rate of chromatin remodeling and gene activation--a novel role for the histone acetyltransferase Gcn5.
    Barbaric S; Walker J; Schmid A; Svejstrup JQ; Hörz W
    EMBO J; 2001 Sep; 20(17):4944-51. PubMed ID: 11532958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p.
    Lau WT; Howson RW; Malkus P; Schekman R; O'Shea EK
    Proc Natl Acad Sci U S A; 2000 Feb; 97(3):1107-12. PubMed ID: 10655492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae.
    Auesukaree C; Homma T; Kaneko Y; Harashima S
    Biochem Biophys Res Commun; 2003 Jul; 306(4):843-50. PubMed ID: 12821119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of methylphosphonate, a phosphate analogue, on the expression and degradation of the high-affinity phosphate transporter Pho84, in Saccharomyces cerevisiae.
    Pratt JR; Mouillon JM; Lagerstedt JO; Pattison-Granberg J; Lundh KI; Persson BL
    Biochemistry; 2004 Nov; 43(45):14444-53. PubMed ID: 15533049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function of the PHO regulatory genes for repressible acid phosphatase synthesis in Saccharomyces cerevisiae.
    Yoshida K; Ogawa N; Oshima Y
    Mol Gen Genet; 1989 May; 217(1):40-6. PubMed ID: 2671650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Genetic analysis of spontaneous suppressors of the pho85 mutation in the yeast Saccharomyces cerevisiae].
    Sambuk EV; Popova IuG; Padkina MV
    Genetika; 2003 Jan; 39(1):18-24. PubMed ID: 12624929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation by phosphorylation of Pho81p, a cyclin-dependent kinase inhibitor in Saccharomyces cerevisiae.
    Knight JP; Daly TM; Bergman LW
    Curr Genet; 2004 Jul; 46(1):10-9. PubMed ID: 15127225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.