These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 9832515)

  • 41. Phosphate transport and sensing in Saccharomyces cerevisiae.
    Wykoff DD; O'Shea EK
    Genetics; 2001 Dec; 159(4):1491-9. PubMed ID: 11779791
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae.
    Shirra MK; Patton-Vogt J; Ulrich A; Liuta-Tehlivets O; Kohlwein SD; Henry SA; Arndt KM
    Mol Cell Biol; 2001 Sep; 21(17):5710-22. PubMed ID: 11486011
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An activation-specific role for transcription factor TFIIB in vivo.
    Wu WH; Hampsey M
    Proc Natl Acad Sci U S A; 1999 Mar; 96(6):2764-9. PubMed ID: 10077585
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reciprocal regulation of the tandemly duplicated PHO5/PHO3 gene cluster within the acid phosphatase multigene family of Saccharomyces cerevisiae.
    Tait-Kamradt AG; Turner KJ; Kramer RA; Elliott QD; Bostian SJ; Thill GP; Rogers DT; Bostian KA
    Mol Cell Biol; 1986 Jun; 6(6):1855-65. PubMed ID: 3537710
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetic and molecular mapping of the pma1 mutation conferring vanadate resistance to the plasma membrane ATPase from Saccharomyces cerevisiae.
    Ulaszewski S; Balzi E; Goffeau A
    Mol Gen Genet; 1987 Apr; 207(1):38-46. PubMed ID: 2885723
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcriptional co-regulation of Saccharomyces cerevisiae alcohol acetyltransferase gene, ATF1 and delta-9 fatty acid desaturase gene, OLE1 by unsaturated fatty acids.
    Fujiwara D; Yoshimoto H; Sone H; Harashima S; Tamai Y
    Yeast; 1998 Jun; 14(8):711-21. PubMed ID: 9675816
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Activation of plasma membrane H(+)-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at supraoptimal temperatures.
    Viegas CA; Sebastião PB; Nunes AG; Sá-Correia I
    Appl Environ Microbiol; 1995 May; 61(5):1904-9. PubMed ID: 7646027
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pho23 is associated with the Rpd3 histone deacetylase and is required for its normal function in regulation of gene expression and silencing in Saccharomyces cerevisiae.
    Loewith R; Smith JS; Meijer M; Williams TJ; Bachman N; Boeke JD; Young D
    J Biol Chem; 2001 Jun; 276(26):24068-74. PubMed ID: 11306585
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An intracellular phosphate buffer filters transient fluctuations in extracellular phosphate levels.
    Thomas MR; O'Shea EK
    Proc Natl Acad Sci U S A; 2005 Jul; 102(27):9565-70. PubMed ID: 15972809
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mutations in GSF1 and GSF2 alter glucose signaling in Saccharomyces cerevisiae.
    Sherwood PW; Carlson M
    Genetics; 1997 Oct; 147(2):557-66. PubMed ID: 9335593
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MOP2 (SLA2) affects the abundance of the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae.
    Na S; Hincapie M; McCusker JH; Haber JE
    J Biol Chem; 1995 Mar; 270(12):6815-23. PubMed ID: 7896828
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An insertion mutation associated with constitutive expression of repressible acid phosphatase in Saccharomyces cerevisiae.
    Toh-e A; Kaneko Y; Akimaru J; Oshima Y
    Mol Gen Genet; 1983; 191(3):339-46. PubMed ID: 6314088
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An in vitro system recapitulates chromatin remodeling at the PHO5 promoter.
    Haswell ES; O'Shea EK
    Mol Cell Biol; 1999 Apr; 19(4):2817-27. PubMed ID: 10082547
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effectors of lysine 4 methylation of histone H3 in Saccharomyces cerevisiae are negative regulators of PHO5 and GAL1-10.
    Carvin CD; Kladde MP
    J Biol Chem; 2004 Aug; 279(32):33057-62. PubMed ID: 15180994
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nucleosome disruption at the yeast PHO5 promoter upon PHO5 induction occurs in the absence of DNA replication.
    Schmid A; Fascher KD; Hörz W
    Cell; 1992 Nov; 71(5):853-64. PubMed ID: 1423633
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The phosphatase system in Saccharomyces cerevisiae.
    Oshima Y
    Genes Genet Syst; 1997 Dec; 72(6):323-34. PubMed ID: 9544531
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel genes involved in endosomal traffic in yeast revealed by suppression of a targeting-defective plasma membrane ATPase mutant.
    Luo Wj; Chang A
    J Cell Biol; 1997 Aug; 138(4):731-46. PubMed ID: 9265642
    [TBL] [Abstract][Full Text] [Related]  

  • 58. After chitin docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase.
    Mehlgarten C; Schaffrath R
    Cell Microbiol; 2004 Jun; 6(6):569-80. PubMed ID: 15104597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Redundancy of chromatin remodeling pathways for the induction of the yeast PHO5 promoter in vivo.
    Barbaric S; Luckenbach T; Schmid A; Blaschke D; Hörz W; Korber P
    J Biol Chem; 2007 Sep; 282(38):27610-21. PubMed ID: 17631505
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [PHO2 and GCN4 transcription activators in the regulation of Saccharomyces cerevisiae acid phosphatase synthesis].
    Belova IV; Sambuk EV; Padkina MV; Smirnov MN
    Genetika; 1992 May; 28(5):11-8. PubMed ID: 1639254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.