These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 9832517)

  • 1. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae.
    Lutfiyya LL; Iyer VR; DeRisi J; DeVit MJ; Brown PO; Johnston M
    Genetics; 1998 Dec; 150(4):1377-91. PubMed ID: 9832517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression.
    Lutfiyya LL; Johnston M
    Mol Cell Biol; 1996 Sep; 16(9):4790-7. PubMed ID: 8756637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3.
    Westholm JO; Nordberg N; Murén E; Ameur A; Komorowski J; Ronne H
    BMC Genomics; 2008 Dec; 9():601. PubMed ID: 19087243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site.
    Wu J; Trumbly RJ
    Yeast; 1998 Aug; 14(11):985-1000. PubMed ID: 9730278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae.
    Zhou H; Winston F
    BMC Genet; 2001; 2():5. PubMed ID: 11281938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae.
    Vallier LG; Carlson M
    Genetics; 1994 May; 137(1):49-54. PubMed ID: 8056322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae.
    DeVit MJ; Johnston M
    Curr Biol; 1999 Nov; 9(21):1231-41. PubMed ID: 10556086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent.
    Ahuatzi D; Herrero P; de la Cera T; Moreno F
    J Biol Chem; 2004 Apr; 279(14):14440-6. PubMed ID: 14715653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose levels regulate the nucleo-mitochondrial distribution of Mig2.
    Fernández-Cid A; Riera A; Herrero P; Moreno F
    Mitochondrion; 2012 May; 12(3):370-80. PubMed ID: 22353369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast SKO1 gene encodes a bZIP protein that binds to the CRE motif and acts as a repressor of transcription.
    Nehlin JO; Carlberg M; Ronne H
    Nucleic Acids Res; 1992 Oct; 20(20):5271-8. PubMed ID: 1437546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of cis-acting elements in the SUC2 promoter of Saccharomyces cerevisiae required for activation of transcription.
    Bu Y; Schmidt MC
    Nucleic Acids Res; 1998 Feb; 26(4):1002-9. PubMed ID: 9461460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality.
    Lagree K; Woolford CA; Huang MY; May G; McManus CJ; Solis NV; Filler SG; Mitchell AP
    PLoS Genet; 2020 Jan; 16(1):e1008582. PubMed ID: 31961865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation.
    Proft M; Serrano R
    Mol Cell Biol; 1999 Jan; 19(1):537-46. PubMed ID: 9858577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae.
    Zaragoza O; Vincent O; Gancedo JM
    Biochem J; 2001 Oct; 359(Pt 1):193-201. PubMed ID: 11563983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose repression in the yeast Saccharomyces cerevisiae.
    Trumbly RJ
    Mol Microbiol; 1992 Jan; 6(1):15-21. PubMed ID: 1310793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the impact of MIG1 and MIG2 on the physiology of Saccharomyces cerevisiae.
    Klein CJ; Rasmussen JJ; Rønnow B; Olsson L; Nielsen J
    J Biotechnol; 1999 Feb; 68(2-3):197-212. PubMed ID: 10194857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of MIG1 and/or MIG2 disruption on aerobic metabolism of succinate dehydrogenase negative Saccharomyces cerevisiae.
    Cao H; Yue M; Li S; Bai X; Zhao X; Du Y
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):733-8. PubMed ID: 20938771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro characterization of the Mig1 repressor from Saccharomyces cerevisiae reveals evidence for monomeric and higher molecular weight forms.
    Needham PG; Trumbly RJ
    Yeast; 2006 Dec; 23(16):1151-66. PubMed ID: 17133623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the SUC2 gene of Saccharomyces cerevisiae is induced by low levels of glucose.
    Ozcan S; Vallier LG; Flick JS; Carlson M; Johnston M
    Yeast; 1997 Feb; 13(2):127-37. PubMed ID: 9046094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silencing MIG1 in Saccharomyces cerevisiae: effects of antisense MIG1 expression and MIG1 gene disruption.
    Olsson L; Larsen ME; Rønnow B; Mikkelsen JD; Nielsen J
    Appl Environ Microbiol; 1997 Jun; 63(6):2366-71. PubMed ID: 9172357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.