These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9833651)

  • 1. Neuroprotective strategies: voltage-gated Na+-channel down-modulation versus presynaptic glutamate release inhibition.
    Obrenovitch TP
    Rev Neurosci; 1998; 9(3):203-11. PubMed ID: 9833651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroprotection--rationale for pharmacological modulation of Na(+)-channels.
    Urenjak J; Obrenovitch TP
    Amino Acids; 1998; 14(1-3):151-8. PubMed ID: 9871455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroprotective use-dependent blockers of Na+ and Ca2+ channels controlling presynaptic release of glutamate.
    Goldin SM; Subbarao K; Sharma R; Knapp AG; Fischer JB; Daly D; Durant GJ; Reddy NL; Hu LY; Magar S
    Ann N Y Acad Sci; 1995 Sep; 765():210-29. PubMed ID: 7486608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of anesthetic and nonanesthetic cyclobutanes on neuronal voltage-gated sodium channels.
    Ratnakumari L; Vysotskaya TN; Duch DS; Hemmings HC
    Anesthesiology; 2000 Feb; 92(2):529-41. PubMed ID: 10691242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate release inhibitors: a critical assessment of their action mechanism.
    Obrenovitch TP; Urenjak J
    Amino Acids; 1998; 14(1-3):143-50. PubMed ID: 9871454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic AMP-mediated regulation of striatal glutamate release: interactions of presynaptic ligand- and voltage-gated ion channels and G-protein-coupled receptors.
    Dohovics R; Janáky R; Varga V; Saransaari P; Oja SS
    Neurochem Int; 2003; 43(4-5):425-30. PubMed ID: 12742088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ion channel blockade on the distribution of Na, K, Ca and other elements in oxygen-glucose deprived CA1 hippocampal neurons.
    LoPachin RM; Gaughan CL; Lehning EJ; Weber ML; Taylor CP
    Neuroscience; 2001; 103(4):971-83. PubMed ID: 11301205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Widespread inhibition of sodium channel-dependent glutamate release from isolated nerve terminals by isoflurane and propofol.
    Lingamaneni R; Birch ML; Hemmings HC
    Anesthesiology; 2001 Dec; 95(6):1460-6. PubMed ID: 11748406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of voltage-gated Na+ channels in hypoxia-induced neuronal injuries.
    Fung ML
    Clin Exp Pharmacol Physiol; 2000 Aug; 27(8):569-74. PubMed ID: 10901384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A voltage-dependent and calcium-permeable ion channel in fused presynaptic terminals of Torpedo.
    Meir A; Rahamimoff R
    J Neurophysiol; 1996 May; 75(5):1858-70. PubMed ID: 8734585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimodal gating of the Na+ channel.
    Keynes RD
    Trends Neurosci; 1994 Feb; 17(2):58-61. PubMed ID: 7512769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of presynaptic Na(+) channel inactivation to paired-pulse synaptic depression in cultured hippocampal neurons.
    He Y; Zorumski CF; Mennerick S
    J Neurophysiol; 2002 Feb; 87(2):925-36. PubMed ID: 11826057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms underlying presynaptic Ca2+ transient and vesicular glutamate release at a CNS nerve terminal during in vitro ischaemia.
    Lee SY; Kim JH
    J Physiol; 2015 Jul; 593(13):2793-806. PubMed ID: 25833340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single and combined effects of carbamazepine and vinpocetine on depolarization-induced changes in Na+, Ca2+ and glutamate release in hippocampal isolated nerve endings.
    Sitges M; Chiu LM; Nekrassov V
    Neurochem Int; 2006 Jul; 49(1):55-61. PubMed ID: 16621162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons.
    Engel D; Jonas P
    Neuron; 2005 Feb; 45(3):405-17. PubMed ID: 15694327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of propofol on sodium channel-dependent sodium influx and glutamate release in rat cerebrocortical synaptosomes.
    Ratnakumari L; Hemmings HC
    Anesthesiology; 1997 Feb; 86(2):428-39. PubMed ID: 9054261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of functional voltage-gated Na(+) channels in cultured human pulmonary artery smooth muscle cells.
    Platoshyn O; Remillard CV; Fantozzi I; Sison T; Yuan JX
    Pflugers Arch; 2005 Nov; 451(2):380-387. PubMed ID: 16052353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The involvement of multiple calcium channel sub-types in glutamate release from cerebellar granule cells and its modulation by GABAB receptor activation.
    Huston E; Cullen GP; Burley JR; Dolphin AC
    Neuroscience; 1995 Sep; 68(2):465-78. PubMed ID: 7477957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of calcium entry and glutamate release in cultured cerebellar granule cells by palytoxin.
    Vale C; Alfonso A; Suñol C; Vieytes MR; Botana LM
    J Neurosci Res; 2006 Jun; 83(8):1393-406. PubMed ID: 16547972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Neuroprotective effect of sodium channel blockers in ischemia: the pathomechanism of early ischemic dysfunction].
    Adám-Vizi V
    Orv Hetil; 2000 Jun; 141(23):1279-86. PubMed ID: 10905082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.