These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 9833996)

  • 1. Enhanced encapsulation of amphotericin B into liposomes by complex formation with polyethylene glycol derivatives.
    Moribe K; Tanaka E; Maruyama K; Iwatsuru M
    Pharm Res; 1998 Nov; 15(11):1737-42. PubMed ID: 9833996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encapsulation characteristics of nystatin in liposomes: effects of cholesterol and polyethylene glycol derivatives.
    Moribe K; Maruyama K; Iwatsuru M
    Int J Pharm; 1999 Oct; 188(2):193-202. PubMed ID: 10518675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular localization and state of amphotericin B in PEG liposomes.
    Moribe K; Maruyama K; Iwatsuru M
    Int J Pharm; 1999 Dec; 193(1):97-106. PubMed ID: 10581426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmaceutical design of the liposomal antimicrobial agents for infectious disease.
    Moribe K; Maruyama K
    Curr Pharm Des; 2002; 8(6):441-54. PubMed ID: 12069381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic investigation of the molecular state of nystatin encapsulated in liposomes.
    Moribe K; Maruyama K; Iwatsuru M
    Int J Pharm; 2000 May; 201(1):37-49. PubMed ID: 10867263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The study on brain targeting of the amphotericin B liposomes.
    Zhang X; Xie J; Li S; Wang X; Hou X
    J Drug Target; 2003 Feb; 11(2):117-22. PubMed ID: 12881198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cholesterol on the release of amphotericin B from PEG-phospholipid micelles.
    Vakil R; Kwon GS
    Mol Pharm; 2008; 5(1):98-104. PubMed ID: 18159926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of poly(ethylene glycol) (PEG) concentration on the permeability of PEG-grafted liposomes.
    Hashizaki K; Taguchi H; Itoh C; Sakai H; Abe M; Saito Y; Ogawa N
    Chem Pharm Bull (Tokyo); 2005 Jan; 53(1):27-31. PubMed ID: 15635224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
    Hadinoto K; Sundaresan A; Cheow WS
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxyfluorescein leakage from poly(ethylene glycol)-grafted liposomes induced by the interaction with serum.
    Hashizaki K; Taguchi H; Sakai H; Abe M; Saito Y; Ogawa N
    Chem Pharm Bull (Tokyo); 2006 Jan; 54(1):80-4. PubMed ID: 16394554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reformulation of Fungizone by PEG-DSPE Micelles: Deaggregation and Detoxification of Amphotericin B.
    Alvarez C; Shin DH; Kwon GS
    Pharm Res; 2016 Sep; 33(9):2098-106. PubMed ID: 27198671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination antifungal therapy involving amphotericin B, rapamycin and 5-fluorocytosine using PEG-phospholipid micelles.
    Vakil R; Knilans K; Andes D; Kwon GS
    Pharm Res; 2008 Sep; 25(9):2056-64. PubMed ID: 18415047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ascorbyl dipalmitate/PEG-lipid nanoparticles as a novel carrier for hydrophobic drugs.
    Moribe K; Maruyama S; Inoue Y; Suzuki T; Fukami T; Tomono K; Higashi K; Tozuka Y; Yamamoto K
    Int J Pharm; 2010 Mar; 387(1-2):236-43. PubMed ID: 20005934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of surface state of poly(ethylene glycol)-coated liposomes using an aqueous two-phase partitioning technique.
    Moribe K; Maruyama K; Iwatsuru M
    Chem Pharm Bull (Tokyo); 1997 Oct; 45(10):1683-7. PubMed ID: 9353897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prolonged blood circulation of methotrexate by modulation of liposomal composition.
    Hong MS; Lim SJ; Lee MK; Kim YB; Kim CK
    Drug Deliv; 2001; 8(4):231-7. PubMed ID: 11757781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of surfactants on the in vitro and in vivo properties of amphotericin B liposome].
    Zhang XB; Xie JQ; Hou XP
    Yao Xue Xue Bao; 2003 Jun; 38(6):471-4. PubMed ID: 14513812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of the hydrophobic domain in poly(ethylene oxide)-poly(varepsilon-caprolactone) based nano-carriers for the solubilization and delivery of Amphotericin B.
    Falamarzian A; Lavasanifar A
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):313-20. PubMed ID: 20674292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ethylene glycol)-modification of the phospholipid vesicles by using the spontaneous incorporation of poly(ethylene glycol)-lipid into the vesicles.
    Sou K; Endo T; Takeoka S; Tsuchida E
    Bioconjug Chem; 2000; 11(3):372-9. PubMed ID: 10821653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding.
    Dos Santos N; Allen C; Doppen AM; Anantha M; Cox KA; Gallagher RC; Karlsson G; Edwards K; Kenner G; Samuels L; Webb MS; Bally MB
    Biochim Biophys Acta; 2007 Jun; 1768(6):1367-77. PubMed ID: 17400180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different hydrophobic anchors conjugated to poly(ethylene glycol): effects on the pharmacokinetics of liposomal vincristine.
    Webb MS; Saxon D; Wong FM; Lim HJ; Wang Z; Bally MB; Choi LS; Cullis PR; Mayer LD
    Biochim Biophys Acta; 1998 Jul; 1372(2):272-82. PubMed ID: 9675310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.