These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 9834183)

  • 1. NeuroD regulates multiple functions in the developing neural retina in rodent.
    Morrow EM; Furukawa T; Lee JE; Cepko CL
    Development; 1999 Jan; 126(1):23-36. PubMed ID: 9834183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NeuroD regulates proliferation of photoreceptor progenitors in the retina of the zebrafish.
    Ochocinska MJ; Hitchcock PF
    Mech Dev; 2009; 126(3-4):128-41. PubMed ID: 19121642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic expression of the basic helix-loop-helix transcription factor neuroD in the rod and cone photoreceptor lineages in the retina of the embryonic and larval zebrafish.
    Ochocinska MJ; Hitchcock PF
    J Comp Neurol; 2007 Mar; 501(1):1-12. PubMed ID: 17206615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Math3 and NeuroD regulate amacrine cell fate specification in the retina.
    Inoue T; Hojo M; Bessho Y; Tano Y; Lee JE; Kageyama R
    Development; 2002 Feb; 129(4):831-42. PubMed ID: 11861467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The basic helix-loop-helix transcription factor neuroD is expressed in the rod lineage of the teleost retina.
    Hitchcock P; Kakuk-Atkins L
    J Comp Neurol; 2004 Sep; 477(1):108-17. PubMed ID: 15281083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NeuroD factors regulate cell fate and neurite stratification in the developing retina.
    Cherry TJ; Wang S; Bormuth I; Schwab M; Olson J; Cepko CL
    J Neurosci; 2011 May; 31(20):7365-79. PubMed ID: 21593321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The MicroRNA, miR-18a, Regulates NeuroD and Photoreceptor Differentiation in the Retina of Zebrafish.
    Taylor SM; Giuffre E; Moseley P; Hitchcock PF
    Dev Neurobiol; 2019 Feb; 79(2):202-219. PubMed ID: 30615274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of homeobox and bHLH genes in specification of a retinal cell type.
    Hatakeyama J; Tomita K; Inoue T; Kageyama R
    Development; 2001 Apr; 128(8):1313-22. PubMed ID: 11262232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proper differentiation of photoreceptors and amacrine cells depends on a regulatory loop between NeuroD and Six6.
    Conte I; Marco-Ferreres R; Beccari L; Cisneros E; Ruiz JM; Tabanera N; Bovolenta P
    Development; 2010 Jul; 137(14):2307-17. PubMed ID: 20534668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of Ath3 in CNTF-mediated differentiation of the late retinal progenitors.
    Bhattacharya S; Dooley C; Soto F; Madson J; Das AV; Ahmad I
    Mol Cell Neurosci; 2004 Sep; 27(1):32-43. PubMed ID: 15345241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of NeuroD as a differentiation factor in the mammalian retina.
    Ahmad I; Acharya HR; Rogers JA; Shibata A; Smithgall TE; Dooley CM
    J Mol Neurosci; 1998 Oct; 11(2):165-78. PubMed ID: 10096043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The basic helix-loop-helix gene hesr2 promotes gliogenesis in mouse retina.
    Satow T; Bae SK; Inoue T; Inoue C; Miyoshi G; Tomita K; Bessho Y; Hashimoto N; Kageyama R
    J Neurosci; 2001 Feb; 21(4):1265-73. PubMed ID: 11160397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zac1 functions through TGFbetaII to negatively regulate cell number in the developing retina.
    Ma L; Cantrup R; Varrault A; Colak D; Klenin N; Götz M; McFarlane S; Journot L; Schuurmans C
    Neural Dev; 2007 Jun; 2():11. PubMed ID: 17559664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NeuroD induces the expression of visinin and calretinin by proliferating cells derived from toxin-damaged chicken retina.
    Fischer AJ; Wang SZ; Reh TA
    Dev Dyn; 2004 Mar; 229(3):555-63. PubMed ID: 14991711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the basic helix-loop-factor Olig2 in the developing retina: Olig2 as a new marker for retinal progenitors and late-born cells.
    Shibasaki K; Takebayashi H; Ikenaka K; Feng L; Gan L
    Gene Expr Patterns; 2007 Jan; 7(1-2):57-65. PubMed ID: 16815098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of Zhx2 transcription factor in bipolar cell differentiation during mouse retinal development.
    Kawamura Y; Yamanaka K; Poh B; Kuribayashi H; Koso H; Watanabe S
    Biochem Biophys Res Commun; 2018 Sep; 503(4):3023-3030. PubMed ID: 30146259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement for Bhlhb5 in the specification of amacrine and cone bipolar subtypes in mouse retina.
    Feng L; Xie X; Joshi PS; Yang Z; Shibasaki K; Chow RL; Gan L
    Development; 2006 Dec; 133(24):4815-25. PubMed ID: 17092954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the Tg(nrd:egfp)/albino zebrafish line to characterize in vivo expression of neurod.
    Thomas JL; Ochocinska MJ; Hitchcock PF; Thummel R
    PLoS One; 2012; 7(1):e29128. PubMed ID: 22235264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal basic helix-loop-helix proteins (NEX, neuroD, NDRF): spatiotemporal expression and targeted disruption of the NEX gene in transgenic mice.
    Schwab MH; Druffel-Augustin S; Gass P; Jung M; Klugmann M; Bartholomae A; Rossner MJ; Nave KA
    J Neurosci; 1998 Feb; 18(4):1408-18. PubMed ID: 9454850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement of multiple basic helix-loop-helix genes for retinal neuronal subtype specification.
    Akagi T; Inoue T; Miyoshi G; Bessho Y; Takahashi M; Lee JE; Guillemot F; Kageyama R
    J Biol Chem; 2004 Jul; 279(27):28492-8. PubMed ID: 15105417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.