BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9834796)

  • 1. Effects of recruitment of collapsed lung units on the elastic pressure-volume relationship in anaesthetised healthy adults.
    Svantesson C; Sigurdsson S; Larsson A; Jonson B
    Acta Anaesthesiol Scand; 1998 Nov; 42(10):1149-56. PubMed ID: 9834796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single computer-controlled mechanical insufflation allows determination of the pressure-volume relationship of the respiratory system.
    Svantesson C; Drefeldt B; Sigurdsson S; Larsson A; Brochard L; Jonson B
    J Clin Monit Comput; 1999 Jan; 15(1):9-16. PubMed ID: 12578056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic pressure-volume curves of the respiratory system reveal a high tendency to lung collapse in young pigs.
    Liu JM; De Robertis E; Blomquist S; Dahm PL; Svantesson C; Jonson B
    Intensive Care Med; 1999 Oct; 25(10):1140-6. PubMed ID: 10551973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point.
    Jonson B; Richard JC; Straus C; Mancebo J; Lemaire F; Brochard L
    Am J Respir Crit Care Med; 1999 Apr; 159(4 Pt 1):1172-8. PubMed ID: 10194162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic pressure-volume curves indicate derecruitment after a single deep expiration in anaesthetised and muscle-relaxed healthy man.
    Sigurdsson S; Svantesson C; Larsson A; Jonson B
    Acta Anaesthesiol Scand; 2000 Sep; 44(8):980-4. PubMed ID: 10981576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal change, reproducibility, and interobserver variability in pressure-volume curves in adults with acute lung injury and acute respiratory distress syndrome.
    Mehta S; Stewart TE; MacDonald R; Hallett D; Banayan D; Lapinsky S; Slutsky A
    Crit Care Med; 2003 Aug; 31(8):2118-25. PubMed ID: 12973168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure-volume curve variations after a recruitment manoeuvre in acute lung injury/ARDS patients: implications for the understanding of the inflection points of the curve.
    Pestaña D; Hernández-Gancedo C; Royo C; Pérez-Chrzanowska H; Criado A
    Eur J Anaesthesiol; 2005 Mar; 22(3):175-80. PubMed ID: 15852989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained inflations improve respiratory compliance during high-frequency oscillatory ventilation but not during large tidal volume positive-pressure ventilation in rabbits.
    Bond DM; McAloon J; Froese AB
    Crit Care Med; 1994 Aug; 22(8):1269-77. PubMed ID: 8045147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of positive end-expiratory pressure on chest wall and lung pressure-volume curve in acute respiratory failure.
    Mergoni M; Martelli A; Volpi A; Primavera S; Zuccoli P; Rossi A
    Am J Respir Crit Care Med; 1997 Sep; 156(3 Pt 1):846-54. PubMed ID: 9310003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volume recruitment maneuvers are less deleterious than persistent low lung volumes in the atelectasis-prone rabbit lung during high-frequency oscillation.
    Bond DM; Froese AB
    Crit Care Med; 1993 Mar; 21(3):402-12. PubMed ID: 8440111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of lung expansion and positive end-expiratory pressure on respiratory mechanics in anesthetized children.
    Kaditis AG; Motoyama EK; Zin W; Maekawa N; Nishio I; Imai T; Milic-Emili J
    Anesth Analg; 2008 Mar; 106(3):775-85, table of contents. PubMed ID: 18292419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low flow inflation pressure-time curve in patients with acute respiratory distress syndrome.
    Kondili E; Prinianakis G; Hoeing S; Chatzakis G; Georgopoulos D
    Intensive Care Med; 2000 Dec; 26(12):1756-63. PubMed ID: 11271082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure-volume curves in acute respiratory failure: automated low flow inflation versus occlusion.
    Servillo G; Svantesson C; Beydon L; Roupie E; Brochard L; Lemaire F; Jonson B
    Am J Respir Crit Care Med; 1997 May; 155(5):1629-36. PubMed ID: 9154868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Static and dynamic pressure-volume curves reflect different aspects of respiratory system mechanics in experimental acute respiratory distress syndrome.
    Adams AB; Cakar N; Marini JJ
    Respir Care; 2001 Jul; 46(7):686-93. PubMed ID: 11455939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic properties of the lung and the chest wall in young and adult healthy pigs.
    De Robertis E; Liu JM; Blomquist S; Dahm PL; Thörne J; Jonson B
    Eur Respir J; 2001 Apr; 17(4):703-11. PubMed ID: 11401067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of sustained pressure application on compliance and blood gases in healthy porcine lungs.
    Markström A; Hedlund A; Sjöstrand U; Nordgren A; Lichtwarck-Aschoff M
    Acta Anaesthesiol Scand; 2001 Nov; 45(10):1235-40. PubMed ID: 11736676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-Term Effects of Lung Volume Recruitment on Maximal Inspiratory Capacity and Vital Capacity in Duchenne Muscular Dystrophy.
    Katz SL; Barrowman N; Monsour A; Su S; Hoey L; McKim D
    Ann Am Thorac Soc; 2016 Feb; 13(2):217-22. PubMed ID: 26599476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lung aeration during ventilation after recruitment guided by tidal elimination of carbon dioxide and dynamic compliance was better than after end-tidal carbon dioxide targeted ventilation: a computed tomography study in surfactant-depleted piglets.
    Hanson A; Göthberg S; Nilsson K; Hedenstierna G
    Pediatr Crit Care Med; 2011 Nov; 12(6):e362-8. PubMed ID: 21263364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis.
    Pelosi P; Ravagnan I; Giurati G; Panigada M; Bottino N; Tredici S; Eccher G; Gattinoni L
    Anesthesiology; 1999 Nov; 91(5):1221-31. PubMed ID: 10551570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and morphological determinants of maximal expiratory flow in chronic obstructive lung disease.
    Tiddens HA; Bogaard JM; de Jongste JC; Hop WC; Coxson HO; Paré PD
    Eur Respir J; 1996 Sep; 9(9):1785-94. PubMed ID: 8880092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.