BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9834905)

  • 1. Aspects of the mechanism of catalysis of glucose oxidase: a docking, molecular mechanics and quantum chemical study.
    Meyer M; Wohlfahrt G; Knäblein J; Schomburg D
    J Comput Aided Mol Des; 1998 Sep; 12(5):425-40. PubMed ID: 9834905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation.
    Su Q; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8572-81. PubMed ID: 10387105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase.
    Szefler B; Diudea MV; Putz MV; Grudzinski IP
    Int J Mol Sci; 2016 Oct; 17(11):. PubMed ID: 27801788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors.
    Leskovac V; Trivić S; Wohlfahrt G; Kandrac J; Pericin D
    Int J Biochem Cell Biol; 2005 Apr; 37(4):731-50. PubMed ID: 15694834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chemical mechanism of action of glucose oxidase from Aspergillus niger.
    Wohlfahrt G; Trivić S; Zeremski J; Pericin D; Leskovac V
    Mol Cell Biochem; 2004 May; 260(1-2):69-83. PubMed ID: 15228088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational redesign of glucose oxidase for improved catalytic function and stability.
    Holland JT; Harper JC; Dolan PL; Manginell MM; Arango DC; Rawlings JA; Apblett CA; Brozik SM
    PLoS One; 2012; 7(6):e37924. PubMed ID: 22719855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose oxidase: natural occurrence, function, properties and industrial applications.
    Wong CM; Wong KH; Chen XD
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):927-38. PubMed ID: 18330562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and thermodynamics of free flavins and the flavin-based redox active site within glucose oxidase dissolved in solution or sequestered within a sol-gel-derived glass.
    Hartnett AM; Ingersoll CM; Baker GA; Bright FV
    Anal Chem; 1999 Mar; 71(6):1215-24. PubMed ID: 10093498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism for conformation mobility of the active center of glucose oxidase adsorbed on single wall carbon nanotubes.
    Ye XS; Wang P; Zhou T; Liu J; Liu F
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2739-43. PubMed ID: 19964045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1.8 and 1.9 A resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes.
    Wohlfahrt G; Witt S; Hendle J; Schomburg D; Kalisz HM; Hecht HJ
    Acta Crystallogr D Biol Crystallogr; 1999 May; 55(Pt 5):969-77. PubMed ID: 10216293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aryl-alcohol oxidase protein sequence: a comparison with glucose oxidase and other FAD oxidoreductases.
    Varela E; Jesús Martínez M; Martínez AT
    Biochim Biophys Acta; 2000 Aug; 1481(1):202-8. PubMed ID: 10962107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution.
    Hecht HJ; Kalisz HM; Hendle J; Schmid RD; Schomburg D
    J Mol Biol; 1993 Jan; 229(1):153-72. PubMed ID: 8421298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards direct enzyme wiring: a theoretical investigation of charge carrier transfer mechanisms between glucose oxidase and organic semiconductors.
    BagdŽiūnas G; Ramanavičius A
    Phys Chem Chem Phys; 2019 Feb; 21(6):2968-2976. PubMed ID: 30671578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of mutant glucose oxidases with increased dye-mediated dehydrogenase activity.
    Horaguchi Y; Saito S; Kojima K; Tsugawa W; Ferri S; Sode K
    Int J Mol Sci; 2012 Nov; 13(11):14149-57. PubMed ID: 23203056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The oxidative part of the glucose-oxidase reaction.
    Leskovac V; Svircević J; Radulović M
    Int J Biochem; 1989; 21(10):1083-8. PubMed ID: 2583344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active site similarities of glucose dehydrogenase, glucose oxidase, and glucoamylase probed by deoxygenated substrates.
    Sierks MR; Bock K; Refn S; Svensson B
    Biochemistry; 1992 Sep; 31(37):8972-7. PubMed ID: 1390684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism.
    Sucharitakul J; Wongnate T; Chaiyen P
    Biochemistry; 2010 May; 49(17):3753-65. PubMed ID: 20359206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetically most likely substrate and active-site protonation sites and pathways in the catalytic mechanism of dihydrofolate reductase.
    Cummins PL; Gready JE
    J Am Chem Soc; 2001 Apr; 123(15):3418-28. PubMed ID: 11472112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen isotope effects on electron transfer to O2 probed using chemically modified flavins bound to glucose oxidase.
    Roth JP; Wincek R; Nodet G; Edmondson DE; McIntire WS; Klinman JP
    J Am Chem Soc; 2004 Nov; 126(46):15120-31. PubMed ID: 15548009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of carbohydrate depletion on the structure, stability and activity of glucose oxidase from Aspergillus niger.
    Kalisz HM; Hecht HJ; Schomburg D; Schmid RD
    Biochim Biophys Acta; 1991 Oct; 1080(2):138-42. PubMed ID: 1932088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.