These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9835191)

  • 1. Estimation of cardiac function from computer analysis of the arterial pressure waveform.
    Guarini M; Urzúa J; Cipriano A; González W
    IEEE Trans Biomed Eng; 1998 Dec; 45(12):1420-8. PubMed ID: 9835191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A right ventricular pressure waveform based pulse contour cardiac output algorithm in canines.
    Karamanoglu M; Bennett TD
    Cardiovasc Eng; 2006 Sep; 6(3):83-92. PubMed ID: 16960760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laguerre-model blind system identification: cardiovascular dynamics estimated from multiple peripheral circulatory signals.
    McCombie DB; Reisner AT; Asada HH
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1889-901. PubMed ID: 16285393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-scale computational method applied to the quantitative evaluation of the left ventricular function.
    Liang F; Taniguchi H; Liu H
    Comput Biol Med; 2007 May; 37(5):700-15. PubMed ID: 16914132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new computer model of mitral valve hemodynamics during ventricular filling.
    Szabó G; Soans D; Graf A; J Beller C; Waite L; Hagl S
    Eur J Cardiothorac Surg; 2004 Aug; 26(2):239-47. PubMed ID: 15296878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of ventricular volume and elastance from the arterial pressure waveform.
    Urzua J; Salinas C; Cipriano A; Guarini M; Lema G; Canessa R
    J Clin Monit Comput; 1998 Apr; 14(3):177-81. PubMed ID: 9676865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.
    Lowe A; Harrison W; El-Aklouk E; Ruygrok P; Al-Jumaily AM
    J Biomech; 2009 Sep; 42(13):2111-5. PubMed ID: 19665136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of dsigma*/dt (max), a load independent index of contractility, in the canine.
    Black A; Grenz N; Niccole S; Arndt P; Lucht J; Nesvig K; Ewert D; Mulligan L
    Cardiovasc Eng; 2009 Jun; 9(2):49-55. PubMed ID: 19466542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity analysis and model assessment: mathematical models for arterial blood flow and blood pressure.
    Ellwein LM; Tran HT; Zapata C; Novak V; Olufsen MS
    Cardiovasc Eng; 2008 Jun; 8(2):94-108. PubMed ID: 18080757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The estimation of the cardiac time-varying parameters during the ejection phase of the cardiac cycle using the Ito calculus.
    Abutaleb AS; Melbin J
    Cardiovasc Eng; 2010 Sep; 10(3):118-27. PubMed ID: 20711850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of hidden state variables of the Intracranial system using constrained nonlinear Kalman filters.
    Hu X; Nenov V; Bergsneider M; Glenn TC; Vespa P; Martin N
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):597-610. PubMed ID: 17405367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the upper limb arterial properties during reactive hyperemia.
    Dobson G; Chong M; Walker M; Petrasek P; Johnston CR; Tyberg JV; Karamanoglu M
    Cardiovasc Eng; 2007 Sep; 7(3):127-34. PubMed ID: 17676391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of pattern recognition and image classification techniques to determine continuous cardiac output from the arterial pressure waveform.
    Martin JF; Volfson LB; Kirzon-Zolin VV; Schukin VG
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):913-20. PubMed ID: 7959797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical modeling of cardiovascular signals and parameter estimation based on the extended Kalman filter.
    McNames J; Aboy M
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):119-29. PubMed ID: 18232353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous left ventricular ejection fraction monitoring by aortic pressure waveform analysis.
    Swamy G; Kuiper J; Gudur MS; Olivier NB; Mukkamala R
    Ann Biomed Eng; 2009 Jun; 37(6):1055-68. PubMed ID: 19308732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling heart rate regulation--part II: parameter identification and analysis.
    Fowler KR; Gray GA; Olufsen MS
    Cardiovasc Eng; 2008 Jun; 8(2):109-19. PubMed ID: 18172764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined transfer function analysis and modelling of cerebral autoregulation.
    Payne SJ; Tarassenko L
    Ann Biomed Eng; 2006 May; 34(5):847-58. PubMed ID: 16708269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of forward and backward arterial waves by analysis of two pressure waveforms.
    Swamy G; Olivier NB; Mukkamala R
    IEEE Trans Biomed Eng; 2010 Dec; 57(12):2833-9. PubMed ID: 20833598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of changes in instantaneous aortic blood flow by the analysis of arterial blood pressure.
    Arai T; Lee K; Marini RP; Cohen RJ
    J Appl Physiol (1985); 2012 Jun; 112(11):1832-8. PubMed ID: 22442022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relations between the timing of the second heart sound and aortic blood pressure.
    Zhang XY; MacPherson E; Zhang YT
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1291-7. PubMed ID: 18390320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.