These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 9835405)

  • 21. Parametric modulation of cortical activation during smooth pursuit with and without target blanking. an fMRI study.
    Nagel M; Sprenger A; Zapf S; Erdmann C; Kömpf D; Heide W; Binkofski F; Lencer R
    Neuroimage; 2006 Feb; 29(4):1319-25. PubMed ID: 16216531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parietal Cortex Integrates Saccade and Object Orientation Signals to Update Grasp Plans.
    Baltaretu BR; Monaco S; Velji-Ibrahim J; Luabeya GN; Crawford JD
    J Neurosci; 2020 Jun; 40(23):4525-4535. PubMed ID: 32354854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [From the abducens nucleus to spatial memory: an ocular motor journey].
    Pierrot-Deseilligny C
    Rev Neurol (Paris); 2005 May; 161(5):549-65. PubMed ID: 16106806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys.
    Tian JR; Lynch JC
    J Neurophysiol; 1996 Oct; 76(4):2754-71. PubMed ID: 8899643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing.
    Connolly JD; Goodale MA; DeSouza JF; Menon RS; Vilis T
    J Neurophysiol; 2000 Sep; 84(3):1645-55. PubMed ID: 10980034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study.
    Nagel M; Sprenger A; Lencer R; Kömpf D; Siebner H; Heide W
    BMC Neurosci; 2008 Sep; 9():89. PubMed ID: 18801205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cortical control of reflexive visually-guided saccades.
    Pierrot-Deseilligny C; Rivaud S; Gaymard B; Agid Y
    Brain; 1991 Jun; 114 ( Pt 3)():1473-85. PubMed ID: 2065261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human cortical networks for new and familiar sequences of saccades.
    Grosbras MH; Leonards U; Lobel E; Poline JB; LeBihan D; Berthoz A
    Cereb Cortex; 2001 Oct; 11(10):936-45. PubMed ID: 11549616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visually guided saccade versus eye-hand reach: contrasting neuronal activity in the cortical supplementary and frontal eye fields.
    Mushiake H; Fujii N; Tanji J
    J Neurophysiol; 1996 May; 75(5):2187-91. PubMed ID: 8734617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oculomotor functions of the parietal lobe: Effects of chronic lesions in humans.
    Rafal RD
    Cortex; 2006 Jul; 42(5):730-9. PubMed ID: 16909633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microstimulation of the lateral wall of the intraparietal sulcus compared with the frontal eye field during oculomotor tasks.
    Mushiake H; Fujii N; Tanji J
    J Neurophysiol; 1999 Mar; 81(3):1443-8. PubMed ID: 10085372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential cortical activation during voluntary and reflexive saccades in man.
    Mort DJ; Perry RJ; Mannan SK; Hodgson TL; Anderson E; Quest R; McRobbie D; McBride A; Husain M; Kennard C
    Neuroimage; 2003 Feb; 18(2):231-46. PubMed ID: 12595178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Eye movement control by the cerebral cortex.
    Pierrot-Deseilligny C; Milea D; Müri RM
    Curr Opin Neurol; 2004 Feb; 17(1):17-25. PubMed ID: 15090873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural mechanisms underlying target selection with saccadic eye movements.
    Schiller PH; Tehovnik EJ
    Prog Brain Res; 2005; 149():157-71. PubMed ID: 16226583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parietal and hippocampal contribution to topokinetic and topographic memory.
    Berthoz A
    Philos Trans R Soc Lond B Biol Sci; 1997 Oct; 352(1360):1437-48. PubMed ID: 9368932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional anatomy of a prelearned sequence of horizontal saccades in humans.
    Petit L; Orssaud C; Tzourio N; Crivello F; Berthoz A; Mazoyer B
    J Neurosci; 1996 Jun; 16(11):3714-26. PubMed ID: 8642414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Topography of supplementary eye field afferents to frontal eye field in macaque: implications for mapping between saccade coordinate systems.
    Schall JD; Morel A; Kaas JH
    Vis Neurosci; 1993; 10(2):385-93. PubMed ID: 7683486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cognitive Control of Saccadic Selection and Inhibition from within the Core Cortical Saccadic Network.
    Jarvstad A; Gilchrist ID
    J Neurosci; 2019 Mar; 39(13):2497-2508. PubMed ID: 30683684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements.
    Ferraina S; Paré M; Wurtz RH
    J Neurophysiol; 2002 Feb; 87(2):845-58. PubMed ID: 11826051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cortical afferents to the smooth-pursuit region of the macaque monkey's frontal eye field.
    Stanton GB; Friedman HR; Dias EC; Bruce CJ
    Exp Brain Res; 2005 Aug; 165(2):179-92. PubMed ID: 15940495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.