These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 9835576)
1. A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Schwieger F; Tebbe CC Appl Environ Microbiol; 1998 Dec; 64(12):4870-6. PubMed ID: 9835576 [TBL] [Abstract][Full Text] [Related]
2. Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Schmalenberger A; Schwieger F; Tebbe CC Appl Environ Microbiol; 2001 Aug; 67(8):3557-63. PubMed ID: 11472932 [TBL] [Abstract][Full Text] [Related]
3. Molecular identification of bacteria by fluorescence-based PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. Widjojoatmodjo MN; Fluit AC; Verhoef J J Clin Microbiol; 1995 Oct; 33(10):2601-6. PubMed ID: 8567890 [TBL] [Abstract][Full Text] [Related]
4. Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Peters S; Koschinsky S; Schwieger F; Tebbe CC Appl Environ Microbiol; 2000 Mar; 66(3):930-6. PubMed ID: 10698754 [TBL] [Abstract][Full Text] [Related]
5. Direct comparison of single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) to characterize a microbial community on the basis of 16S rRNA gene fragments. Hori T; Haruta S; Ueno Y; Ishii M; Igarashi Y J Microbiol Methods; 2006 Jul; 66(1):165-9. PubMed ID: 16364477 [TBL] [Abstract][Full Text] [Related]
6. Genetic profiling of noncultivated bacteria from the rhizospheres of sugar beet (Beta vulgaris) reveal field and annual variability but no effect of a transgenic herbicide resistance. Schmalenberger A; Tebbe CC Can J Microbiol; 2003 Jan; 49(1):1-8. PubMed ID: 12674342 [TBL] [Abstract][Full Text] [Related]
7. Differences in the rhizosphere bacterial community of a transplastomic tobacco plant compared to its non-engineered counterpart. Brinkmann N; Tebbe CC Environ Biosafety Res; 2007; 6(1-2):113-9. PubMed ID: 17961485 [TBL] [Abstract][Full Text] [Related]
8. Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)-linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Schwieger F; Tebbe CC Appl Environ Microbiol; 2000 Aug; 66(8):3556-65. PubMed ID: 10919821 [TBL] [Abstract][Full Text] [Related]
9. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Lee DH; Zo YG; Kim SJ Appl Environ Microbiol; 1996 Sep; 62(9):3112-20. PubMed ID: 8795197 [TBL] [Abstract][Full Text] [Related]
10. Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Fracchia L; Dohrmann AB; Martinotti MG; Tebbe CC Appl Microbiol Biotechnol; 2006 Aug; 71(6):942-52. PubMed ID: 16395545 [TBL] [Abstract][Full Text] [Related]
11. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Duineveld BM; Kowalchuk GA; Keijzer A; van Elsas JD; van Veen JA Appl Environ Microbiol; 2001 Jan; 67(1):172-8. PubMed ID: 11133442 [TBL] [Abstract][Full Text] [Related]
16. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Griffiths RI; Whiteley AS; O'Donnell AG; Bailey MJ Appl Environ Microbiol; 2000 Dec; 66(12):5488-91. PubMed ID: 11097934 [TBL] [Abstract][Full Text] [Related]
17. Rapid identification of bacteria from positive blood cultures by fluorescence-based PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. Turenne CY; Witwicki E; Hoban DJ; Karlowsky JA; Kabani AM J Clin Microbiol; 2000 Feb; 38(2):513-20. PubMed ID: 10655337 [TBL] [Abstract][Full Text] [Related]
18. 16S rRNA gene-based analysis of microbial community by whole-genome amplification and minigel-single-strand conformation polymorphism technique. Oto M; Suda W; Shinoyama H J Biosci Bioeng; 2006 Nov; 102(5):482-4. PubMed ID: 17189181 [TBL] [Abstract][Full Text] [Related]
19. Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Rölleke S; Muyzer G; Wawer C; Wanner G; Lubitz W Appl Environ Microbiol; 1996 Jun; 62(6):2059-65. PubMed ID: 8787403 [TBL] [Abstract][Full Text] [Related]
20. Active community profiling via capillary electrophoresis single-strand conformation polymorphism analysis of amplified 16S rRNA and 16S rRNA genes. Hiibel SR; Pruden A; Crimi B; Reardon KF J Microbiol Methods; 2010 Dec; 83(3):286-90. PubMed ID: 20940021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]