These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 9835583)
1. Ralstonia solanacearum pectin methylesterase is required for growth on methylated pectin but not for bacterial wilt virulence. Tans-Kersten J; Guan Y; Allen C Appl Environ Microbiol; 1998 Dec; 64(12):4918-23. PubMed ID: 9835583 [TBL] [Abstract][Full Text] [Related]
2. An exo-poly-alpha-D-galacturonosidase, PehB, is required for wild-type virulence of Ralstonia solanacearum. Huang Q; Allen C J Bacteriol; 1997 Dec; 179(23):7369-78. PubMed ID: 9393701 [TBL] [Abstract][Full Text] [Related]
3. Ralstonia solanacearum AmpD is required for wild-type bacterial wilt virulence. Tans-Kersten J; Gay J; Allen C Mol Plant Pathol; 2000 May; 1(3):179-85. PubMed ID: 20572964 [TBL] [Abstract][Full Text] [Related]
4. Degradation of the Plant Defense Signal Salicylic Acid Protects Ralstonia solanacearum from Toxicity and Enhances Virulence on Tobacco. Lowe-Power TM; Jacobs JM; Ailloud F; Fochs B; Prior P; Allen C mBio; 2016 Jun; 7(3):. PubMed ID: 27329752 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a Ralstonia solanacearum operon required for polygalacturonate degradation and uptake of galacturonic acid. González ET; Allen C Mol Plant Microbe Interact; 2003 Jun; 16(6):536-44. PubMed ID: 12795379 [TBL] [Abstract][Full Text] [Related]
6. Hierarchical autoinduction in Ralstonia solanacearum: control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester. Flavier AB; Ganova-Raeva LM; Schell MA; Denny TP J Bacteriol; 1997 Nov; 179(22):7089-97. PubMed ID: 9371457 [TBL] [Abstract][Full Text] [Related]
7. Comparative transcriptomic studies identify specific expression patterns of virulence factors under the control of the master regulator PhcA in the Ralstonia solanacearum species complex. Perrier A; Barlet X; Peyraud R; Rengel D; Guidot A; Genin S Microb Pathog; 2018 Mar; 116():273-278. PubMed ID: 29408557 [TBL] [Abstract][Full Text] [Related]
8. A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester. Clough SJ; Lee KE; Schell MA; Denny TP J Bacteriol; 1997 Jun; 179(11):3639-48. PubMed ID: 9171411 [TBL] [Abstract][Full Text] [Related]
9. Involvement of Fungal Pectin Methylesterase Activity in the Interaction Between Fusarium graminearum and Wheat. Sella L; Castiglioni C; Paccanaro MC; Janni M; Schäfer W; D'Ovidio R; Favaron F Mol Plant Microbe Interact; 2016 Apr; 29(4):258-67. PubMed ID: 26713352 [TBL] [Abstract][Full Text] [Related]
10. Genome-Wide Identification and Expression Profiling of the Polygalacturonase ( Khan N; Fatima F; Haider MS; Shazadee H; Liu Z; Zheng T; Fang J Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261768 [TBL] [Abstract][Full Text] [Related]
11. Ralstonia solanacearum iron scavenging by the siderophore staphyloferrin B is controlled by PhcA, the global virulence regulator. Bhatt G; Denny TP J Bacteriol; 2004 Dec; 186(23):7896-904. PubMed ID: 15547261 [TBL] [Abstract][Full Text] [Related]
12. A regulatory locus, pehSR, controls polygalacturonase production and other virulence functions in Ralstonia solanacearum. Allen C; Gay J; Simon-Buela L Mol Plant Microbe Interact; 1997 Dec; 10(9):1054-64. PubMed ID: 9390420 [TBL] [Abstract][Full Text] [Related]
13. Characterization of bacteria degrading 3-hydroxy palmitic acid methyl ester (3OH-PAME), a quorum sensing molecule of Ralstonia solanacearum. Achari GA; Ramesh R Lett Appl Microbiol; 2015 May; 60(5):447-55. PubMed ID: 25580768 [TBL] [Abstract][Full Text] [Related]
14. The involvement of the Type Six Secretion System (T6SS) in the virulence of Asolkar T; Ramesh R 3 Biotech; 2020 Jul; 10(7):324. PubMed ID: 32656057 [No Abstract] [Full Text] [Related]
15. Contribution of the Choi K; Son GJ; Ahmad S; Lee SY; Lee HJ; Lee SW Plant Pathol J; 2020 Aug; 36(4):355-363. PubMed ID: 32788894 [TBL] [Abstract][Full Text] [Related]
16. VsrA, a second two-component sensor regulating virulence genes of Pseudomonas solanacearum. Schell MA; Denny TP; Huang J Mol Microbiol; 1994 Feb; 11(3):489-500. PubMed ID: 8152373 [TBL] [Abstract][Full Text] [Related]
17. Pectin methyl esterase from Aspergillus aculeatus: expression cloning in yeast and characterization of the recombinant enzyme. Christgau S; Kofod LV; Halkier T; Andersen LN; Hockauf M; Dörreich K; Dalbøge H; Kauppinen S Biochem J; 1996 Nov; 319 ( Pt 3)(Pt 3):705-12. PubMed ID: 8920970 [TBL] [Abstract][Full Text] [Related]
18. Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10. Kars I; McCalman M; Wagemakers L; VAN Kan JA Mol Plant Pathol; 2005 Nov; 6(6):641-52. PubMed ID: 20565686 [TBL] [Abstract][Full Text] [Related]
19. An Antisense Pectin Methylesterase Gene Alters Pectin Chemistry and Soluble Solids in Tomato Fruit. Tieman DM; Harriman RW; Ramamohan G; Handa AK Plant Cell; 1992 Jun; 4(6):667-679. PubMed ID: 12297658 [TBL] [Abstract][Full Text] [Related]
20. Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Valette-Collet O; Cimerman A; Reignault P; Levis C; Boccara M Mol Plant Microbe Interact; 2003 Apr; 16(4):360-7. PubMed ID: 12744465 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]