These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9836150)

  • 1. Contraction with shortening during stimulation or during relaxation: how do the energetic costs compare?
    Lou F; Curtin NA; Woledge RC
    J Muscle Res Cell Motil; 1998 Oct; 19(7):797-802. PubMed ID: 9836150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shortening during stimulation vs. during relaxation. How do the costs compare?
    Lou F; Curtin NA; Woledge RC
    Adv Exp Med Biol; 1998; 453():545-53; discussion 553-5. PubMed ID: 9889867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic energy storage and release in white muscle from dogfish scyliorhinus canicula.
    Lou F; Curtin NA; Woledge RC
    J Exp Biol; 1999 Jan; 202 (Pt 2)():135-42. PubMed ID: 9851903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics of shortening depend on stimulation frequency in single muscle fibres from Xenopus laevis at 20 degrees C.
    Buschman HP; Elzinga G; Woledge RC
    Pflugers Arch; 1995 Jun; 430(2):160-7. PubMed ID: 7675627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of energy conversion during shortening of muscle fibres from the dogfish Scyliorhinus canicula.
    Curtin NA; Woledge RC
    J Exp Biol; 1991 Jul; 158():343-53. PubMed ID: 1919411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy cost of isometric force production after active shortening in skinned muscle fibres.
    Joumaa V; Fitzowich A; Herzog W
    J Exp Biol; 2017 Apr; 220(Pt 8):1509-1515. PubMed ID: 28232399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force relaxation, labile heat and parvalbumin content of skeletal muscle fibres of Xenopus laevis.
    Lännergren J; Elzinga G; Stienen GJ
    J Physiol; 1993 Apr; 463():123-40. PubMed ID: 8246178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of the force-velocity relation, isometric tension and relaxation rate during fatigue in intact, single fibres of Xenopus skeletal muscle.
    Westerblad H; Lännergren J
    J Muscle Res Cell Motil; 1994 Jun; 15(3):287-98. PubMed ID: 7929794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of fast- and slow-twitch muscles of the mouse.
    Barclay CJ; Constable JK; Gibbs CL
    J Physiol; 1993 Dec; 472():61-80. PubMed ID: 8145164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetic aspects of skeletal muscle contraction: implications of fiber types.
    Rall JA
    Exerc Sport Sci Rev; 1985; 13():33-74. PubMed ID: 3159582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictions of the time course of force and power output by dogfish white muscle fibres during brief tetani.
    Curtin NA; Gardner-Medwin AR; Woledge RC
    J Exp Biol; 1998 Jan; 201(Pt 1):103-14. PubMed ID: 9390941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Power and efficiency: how to get the most out of striated muscle.
    Curtin NA; Woledge RC
    Adv Exp Med Biol; 1993; 332():729-33; discussion 733-4. PubMed ID: 8109383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of the level of activation and shortening velocity on energy output in type 3 muscle fibres from Xenopus laevis.
    Buschman HP; Elzinga G; Woledge RC
    Pflugers Arch; 1996; 433(1-2):153-9. PubMed ID: 9019716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isometric and isovelocity contractile performance of red muscle fibres from the dogfish Scyliorhinus canicula.
    Lou F; Curtin NA; Woledge RC
    J Exp Biol; 2002 Jun; 205(Pt 11):1585-95. PubMed ID: 12000803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The energetics of work and heat production by single muscle fibres from the frog.
    Woledge RC; Wilson MG; Howarth JV; Elzinga G; Kometani K
    Adv Exp Med Biol; 1988; 226():677-88. PubMed ID: 3407537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of active pre-shortening on isometric and isotonic performance of single frog muscle fibres.
    Granzier HL; Pollack GH
    J Physiol; 1989 Aug; 415():299-327. PubMed ID: 2640463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of temperature on mechanics and energetics of muscle contraction.
    Rall JA; Woledge RC
    Am J Physiol; 1990 Aug; 259(2 Pt 2):R197-203. PubMed ID: 2201213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the maximum speed of shortening of frog muscle fibres early in a tetanic contraction and during relaxation.
    Josephson RK; Edman KA
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):511-25. PubMed ID: 9518709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myofibrillar ATPase activity and mechanical performance of skinned fibres from rabbit psoas muscle.
    Potma EJ; Stienen GJ; Barends JP; Elzinga G
    J Physiol; 1994 Jan; 474(2):303-17. PubMed ID: 8006817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energetic cost of activation of white muscle fibres from the dogfish Scyliorhinus canicula.
    Lou F; Curtin N; Woledge R
    J Exp Biol; 1997; 200(Pt 3):495-501. PubMed ID: 9318167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.