These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9836150)

  • 41. Effects of calcium and substrate on force-velocity relation and energy turnover in skinned smooth muscle of the guinea-pig.
    Arner A; Hellstrand P
    J Physiol; 1985 Mar; 360():347-65. PubMed ID: 3872937
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of length range on heat rate and power during shortening near in situ length in frog muscle.
    Gilbert SH
    J Muscle Res Cell Motil; 1986 Apr; 7(2):115-21. PubMed ID: 2940260
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanical characteristics of skinned and intact muscle fibres from the giant barnacle, Balanus nubilus.
    Griffiths PJ; Duchateau JJ; Maeda Y; Potter JD; Ashley CC
    Pflugers Arch; 1990 Feb; 415(5):554-65. PubMed ID: 2139207
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Slowing of relaxation and [Ca2+]i during prolonged tetanic stimulation of single fibres from Xenopus skeletal muscle.
    Westerblad H; Allen DG
    J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):723-36. PubMed ID: 8734985
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Patterns of strain and activation in the thigh muscles of goats across gaits during level locomotion.
    Gillis GB; Flynn JP; McGuigan P; Biewener AA
    J Exp Biol; 2005 Dec; 208(Pt 24):4599-611. PubMed ID: 16326942
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The pCa-tension and force-velocity characteristics of skinned fibres isolated from fish fast and slow muscles.
    Altringham JD; Johnston IA
    J Physiol; 1982 Dec; 333():421-49. PubMed ID: 7182472
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The energetics of shortening amphibian cardiac muscle.
    Holroyd SM; Gibbs CL
    Pflugers Arch; 1993 Jun; 424(1):84-90. PubMed ID: 8351207
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Muscular force production after concentric contraction.
    Kosterina N; Westerblad H; Lännergren J; Eriksson A
    J Biomech; 2008 Aug; 41(11):2422-9. PubMed ID: 18619602
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Shortening velocity extrapolated to zero load and unloaded shortening velocity of whole rat skeletal muscle.
    Claflin DR; Faulkner JA
    J Physiol; 1985 Feb; 359():357-63. PubMed ID: 3999042
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of intrinsic muscular nonlinearities on the energetics of locomotion in a computational model of an anguilliform swimmer.
    Hamlet C; Fauci LJ; Tytell ED
    J Theor Biol; 2015 Nov; 385():119-29. PubMed ID: 26362101
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Change in contractile properties of human muscle in relationship to the loss of power and slowing of relaxation seen with fatigue.
    Jones DA; de Ruiter CJ; de Haan A
    J Physiol; 2006 Nov; 576(Pt 3):913-22. PubMed ID: 16916911
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Energetics of shortening muscles in twitches and tetanic contractions. II. Force-determined shortening heat.
    Homsher E; Mommaerts WF; Ricchiuti NV
    J Gen Physiol; 1973 Dec; 62(6):677-92. PubMed ID: 4548714
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of isometric force and isotonic shortening velocity by phosphorylation of the 20,000 dalton myosin light chain of rat uterine smooth muscle.
    Haeberle JR; Hott JW; Hathaway DR
    Pflugers Arch; 1985 Feb; 403(2):215-9. PubMed ID: 3982971
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Muscle force, work and cost: a novel technique to revisit the Fenn effect.
    Ortega JO; Lindstedt SL; Nelson FE; Jubrias SA; Kushmerick MJ; Conley KE
    J Exp Biol; 2015 Jul; 218(Pt 13):2075-82. PubMed ID: 25964423
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The thermal effects of shortening in tetanic contractions of frog muscle.
    Dickinson VA; Woledge RC
    J Physiol; 1973 Sep; 233(3):659-71. PubMed ID: 4543176
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Energy transfer during stress relaxation of contracting frog muscle fibres.
    Mantovani M; Heglund NC; Cavagna GA
    J Physiol; 2001 Dec; 537(Pt 3):923-39. PubMed ID: 11744765
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isometric contractile properties and velocity of shortening during avian myogenesis.
    Reiser PJ; Stokes BT; Rall JA
    Am J Physiol; 1982 Sep; 243(3):C177-83. PubMed ID: 6214193
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-energy phosphate metabolism and energy liberation associated with rapid shortening in frog skeletal muscle.
    Homsher E; Irving M; Wallner A
    J Physiol; 1981 Dec; 321():423-36. PubMed ID: 6978398
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differences in maximum velocity of shortening along single muscle fibres of the frog.
    Edman KA; Reggiani C; te Kronnie G
    J Physiol; 1985 Aug; 365():147-63. PubMed ID: 3875712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.