These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9836631)

  • 1. 53Mn-53Cr dating of fayalite formation in the CV3 chondrite Mokoia: evidence for asteroidal alteration.
    Hutcheon ID; Krot AN; Keil K; Phinney DL; Scott ER
    Science; 1998 Dec; 282(5395):1865-7. PubMed ID: 9836631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early aqueous activity on primitive meteorite parent bodies.
    Endress M; Zinner E; Bischoff A
    Nature; 1996 Feb; 379(6567):701-3. PubMed ID: 8602215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of magnetite in oxidized CV chondrites: in situ measurement of oxygen isotope compositions of Allende magnetite and olivine.
    Choi BG; McKeegan KD; Leshin LA; Wasson JT
    Earth Planet Sci Lett; 1997 Jan; 146(1-2):337-49. PubMed ID: 11540500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for oxygen isotopic exchange in chondrules from Kaba (CV3.1) carbonaceous chondrite during aqueous fluid-rock interaction on the CV parent asteroid.
    Krot AN; Nagashima K; Fintor K; Pál-Molnár E
    Acta Geogr Geol Meteorol Debr Geol Gemorfol Termeszfoldr Sor; 2019 Feb; 246():419-435. PubMed ID: 30930966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite.
    Doyle PM; Jogo K; Nagashima K; Krot AN; Wakita S; Ciesla FJ; Hutcheon ID
    Nat Commun; 2015 Jun; 6():7444. PubMed ID: 26100451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isotopic anomalies in extraterrestrial grains.
    Ireland TR
    J R Soc West Aust; 1996 Mar; 79 Pt 1():43-50. PubMed ID: 11541324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen isotopic abundances in calcium- aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity.
    McKeegan KD; Leshin LA; Russell SS; MacPherson GJ
    Science; 1998 Apr; 280(5362):414-8. PubMed ID: 9545215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of chondrules in a moderately high dust enriched disk: evidence from oxygen isotopes of chondrules from the Kaba CV3 chondrite.
    Hertwig AT; Defouilloy C; Kita NT
    Geochim Cosmochim Acta; 2018 Mar; 224():116-131. PubMed ID: 30713348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meteoritic Evidence for a Ceres-sized Water-rich Carbonaceous Chondrite Parent Asteroid.
    Hamilton VE; Goodrich CA; Treiman AH; Connolly HC; Zolensky ME; Shaddad MH
    Nat Astron; 2020; 2020():. PubMed ID: 33681472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The early evolution of the inner solar system: a meteoritic perspective.
    O'D Alexander CM; Boss AP; Carlson RW
    Science; 2001 Jul; 293(5527):64-8. PubMed ID: 11441173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous alteration of the Bali CV3 chondrite: evidence from mineralogy, mineral chemistry, and oxygen isotopic compositions.
    Keller LP; Thomas KL; Clayton RN; Mayeda TK; DeHart JM; McKay DS
    Geochim Cosmochim Acta; 1994 Dec; 58(24):5589-98. PubMed ID: 11539152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Tagish Lake meteorite: a possible sample from a D-type asteroid.
    Hiroi T; Zolensky ME; Pieters CM
    Science; 2001 Sep; 293(5538):2234-6. PubMed ID: 11520950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnesium and
    Olsen MB; Wielandt D; Schiller M; Van Kooten EM; Bizzarro M
    Geochim Cosmochim Acta; 2016 Oct; 191():118-138. PubMed ID: 27563152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions.
    Bizzarro M; Baker JA; Haack H
    Nature; 2004 Sep; 431(7006):275-8. PubMed ID: 15372023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced and unstratified crust in CV chondrite parent body.
    Ganino C; Libourel G
    Nat Commun; 2017 Aug; 8(1):261. PubMed ID: 28811478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen isotope variation in stony-iron meteorites.
    Greenwood RC; Franchi IA; Jambon A; Barrat JA; Burbine TH
    Science; 2006 Sep; 313(5794):1763-5. PubMed ID: 16931721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-lived chlorine-36 in a Ca- and Al-rich inclusion from the Ningqiang carbonaceous chondrite.
    Lin Y; Guan Y; Leshin LA; Ouyang Z; Wang D
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1306-11. PubMed ID: 15671168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998).
    Zolensky ME; Bodnar RJ; Gibson EK; Nyquist LE; Reese Y; Shih CY; Wiesmann H
    Science; 1999 Aug; 285(5432):1377-9. PubMed ID: 10464091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 16O excesses in olivine inclusions in Yamato-86009 and Murchison chondrites and their relation to CAIs.
    Hiyagon H; Hashimoto A
    Science; 1999 Feb; 283(5403):828-31. PubMed ID: 9933162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comet or asteroid shower in the late Eocene?
    Tagle R; Claeys P
    Science; 2004 Jul; 305(5683):492. PubMed ID: 15273387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.