BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9836770)

  • 1. Functional changes in human pial arteries (300 to 900 micrometer ID) within 48 hours of aneurysmal subarachnoid hemorrhage.
    Bevan JA; Bevan RD; Walters CL; Wellman T
    Stroke; 1998 Dec; 29(12):2575-9. PubMed ID: 9836770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascular pathology of large cerebral arteries in experimental subarachnoid hemorrhage: Vasoconstriction, functional CGRP depletion and maintained CGRP sensitivity.
    Johansson SE; Abdolalizadeh B; Sheykhzade M; Edvinsson L; Sams A
    Eur J Pharmacol; 2019 Mar; 846():109-118. PubMed ID: 30653947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weakness of sympathetic neural control of human pial compared with superficial temporal arteries reflects low innervation density and poor sympathetic responsiveness.
    Bevan RD; Dodge J; Nichols P; Penar PL; Walters CL; Wellman T; Bevan JA
    Stroke; 1998 Jan; 29(1):212-21. PubMed ID: 9445353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in contractile response and effect of a calcium antagonist, nimodipine, in isolated intracranial arteries of baboon following experimental subarachnoid hemorrhage.
    Sahlin C; Owman C; Chang JY; Delgado T; Salford LG; Svendgaard NA
    Brain Res Bull; 1990 Mar; 24(3):355-61. PubMed ID: 2337815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulatory role of endothelial and nonendothelial nitric oxide in 5-hydroxytryptamine-induced contraction in cerebral arteries after subarachnoid hemorrhage.
    Miranda FJ; Alabadí JA; Torregrosa G; Salom JB; Jover T; Barberá MD; Alborch E
    Neurosurgery; 1996 Nov; 39(5):998-1003; discussion 1003-4. PubMed ID: 8905757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage.
    Borel CO; McKee A; Parra A; Haglund MM; Solan A; Prabhakar V; Sheng H; Warner DS; Niklason L
    Stroke; 2003 Feb; 34(2):427-33. PubMed ID: 12574555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebrovascular sensitivity to vasoconstricting agents induced by subarachnoid hemorrhage and vasospasm in dogs.
    Toda N; Ozaki T; Ohta T
    J Neurosurg; 1977 Mar; 46(3):296-303. PubMed ID: 839255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impairement of vascular reactivity and changes in intracellular calcium and calmodulin levels of smooth muscle cells in canine basilar arteries after subarachnoid hemorrhage.
    Sakaki S; Ohue S; Kohno K; Takeda S
    Neurosurgery; 1989 Nov; 25(5):753-61. PubMed ID: 2586728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual variations in response of human cerebral arterioles to vasoactive substances, human plasma, and CSF from patients with aneurysmal SAH.
    Brandt L; Ljunggren B; Andersson KE; Hindfelt B
    J Neurosurg; 1981 Sep; 55(3):431-7. PubMed ID: 7264734
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of subarachnoid hemorrhage on contractile responses and noradrenaline release evoked in cat cerebral arteries by histamine.
    Lobato RD; Marín J; Salaices M; Rico ML; Sanchez CF
    J Neurosurg; 1981 Oct; 55(4):543-9. PubMed ID: 7277003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective effects of subarachnoid hemorrhage on cerebral vascular responses to 4-aminopyridine in rats.
    Quan L; Sobey CG
    Stroke; 2000 Oct; 31(10):2460-5. PubMed ID: 11022080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of vascular tone by endogenous endothelin-1 in human pial arteries.
    Thorin E; Nguyen TD; Bouthillier A
    Stroke; 1998 Jan; 29(1):175-80. PubMed ID: 9445348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage.
    Sun BL; Zheng CB; Yang MF; Yuan H; Zhang SM; Wang LX
    Cell Mol Neurobiol; 2009 Mar; 29(2):235-41. PubMed ID: 18821009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of indomethacin and prostacyclin on isolated human pial arteries contracted by CSF from patients with aneurysmal SAH.
    Brandt L; Ljunggren B; Andersson KE; Hindfelt B; Uski T
    J Neurosurg; 1981 Dec; 55(6):877-83. PubMed ID: 6795316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced myogenic tone in cerebral arteries from a rabbit model of subarachnoid hemorrhage.
    Ishiguro M; Puryear CB; Bisson E; Saundry CM; Nathan DJ; Russell SR; Tranmer BI; Wellman GC
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2217-25. PubMed ID: 12388249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subarachnoid haemorrhage: what happens to the cerebral arteries?
    Sobey CG; Faraci FM
    Clin Exp Pharmacol Physiol; 1998 Nov; 25(11):867-76. PubMed ID: 9807657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced vasoconstrictor effect of endothelin in cerebral arteries from rats with subarachnoid haemorrhage.
    Alafaci C; Jansen I; Arbab MA; Shiokawa Y; Svendgaard NA; Edvinsson L
    Acta Physiol Scand; 1990 Mar; 138(3):317-9. PubMed ID: 2183539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of a R-type Ca2+ channel (CaV 2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage.
    Ishiguro M; Wellman TL; Honda A; Russell SR; Tranmer BI; Wellman GC
    Circ Res; 2005 Mar; 96(4):419-26. PubMed ID: 15692089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered reactivity of human cerebral arteries after subarachnoid hemorrhage.
    Onoue H; Kaito N; Akiyama M; Tomii M; Tokudome S; Abe T
    J Neurosurg; 1995 Sep; 83(3):510-5. PubMed ID: 7545226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion channels and calcium signaling in cerebral arteries following subarachnoid hemorrhage.
    Wellman GC
    Neurol Res; 2006 Oct; 28(7):690-702. PubMed ID: 17164032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.