These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 9837702)

  • 41. The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission.
    Guo T; Qiu ZP
    Math Biosci Eng; 2019 Jul; 16(6):6822-6841. PubMed ID: 31698590
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of the cell interaction parameters on the simulated CD4+ lymphocyte depletion in HIV infection.
    Dolezal J; Hraba T; Celikovský S
    Folia Biol (Praha); 1991; 37(1):42-51. PubMed ID: 1676972
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A hybrid stochastic-deterministic computational model accurately describes spatial dynamics and virus diffusion in HIV-1 growth competition assay.
    Immonen T; Gibson R; Leitner T; Miller MA; Arts EJ; Somersalo E; Calvetti D
    J Theor Biol; 2012 Nov; 312():120-32. PubMed ID: 22814476
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays.
    Yuan Z; Zou X
    Math Biosci Eng; 2013 Apr; 10(2):483-98. PubMed ID: 23458310
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Excitability in the host-pathogen interactions of HIV infection and emergence of viral load blips.
    Nkoa Onana DF; Mewoli B; Ouattara DA
    J Theor Biol; 2013 Jan; 317():407-17. PubMed ID: 23108210
    [TBL] [Abstract][Full Text] [Related]  

  • 46. HIV infection decreases intracellular nicotinamide adenine dinucleotide [NAD].
    Murray MF; Nghiem M; Srinivasan A
    Biochem Biophys Res Commun; 1995 Jul; 212(1):126-31. PubMed ID: 7611995
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immune impairment in HIV infection: existence of risky and immunodeficiency thresholds.
    Iwami S; Miura T; Nakaoka S; Takeuchi Y
    J Theor Biol; 2009 Oct; 260(4):490-501. PubMed ID: 19577579
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stochastic modelling of viral blips in HIV-1-infected patients: effects of inhomogeneous density fluctuations.
    Sánchez-Taltavull D; Alarcón T
    J Theor Biol; 2015 Apr; 371():79-89. PubMed ID: 25681146
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reduction of HIV concentration during acute infection: independence from a specific immune response.
    Phillips AN
    Science; 1996 Jan; 271(5248):497-9. PubMed ID: 8560262
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of spatial distribution of T-Cells and HIV load on HIV progression.
    Graziano FM; Kettoola SY; Munshower JM; Stapleton JT; Towfic GJ
    Bioinformatics; 2008 Mar; 24(6):855-60. PubMed ID: 18187444
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A delay-differential equation model of HIV related cancer-immune system dynamics.
    Foryś U; Poleszczuk J
    Math Biosci Eng; 2011 Apr; 8(2):627-41. PubMed ID: 21631150
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stochastic effects in a model of nematode infection in ruminants.
    Marion G; Renshaw E; Gibson G
    IMA J Math Appl Med Biol; 1998 Jun; 15(2):97-116. PubMed ID: 9661280
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mathematical model of the effect of affinity hemodialysis on the T-cell depletion leading to AIDS.
    Tullis RH
    Blood Purif; 2004; 22(1):84-91. PubMed ID: 14732816
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modelling the impact of acute infection dynamics on the accumulation of HIV-1 mutations.
    Shiri T; Welte A
    J Theor Biol; 2011 Jun; 279(1):44-54. PubMed ID: 21420419
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A kinetic model of CD4+ lymphocytes with the human immunodeficiency virus (HIV).
    Bailey JJ; Fletcher JE; Chuck ET; Shrager RI
    Biosystems; 1992; 26(3):177-83. PubMed ID: 1348962
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Virus dynamics model with intracellular delays and immune response.
    Song H; Jiang W; Liu S
    Math Biosci Eng; 2015 Feb; 12(1):185-208. PubMed ID: 25811332
    [TBL] [Abstract][Full Text] [Related]  

  • 57. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time.
    Perelson AS; Neumann AU; Markowitz M; Leonard JM; Ho DD
    Science; 1996 Mar; 271(5255):1582-6. PubMed ID: 8599114
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antigen-driven T-cell turnover.
    Fraser C; Ferguson NM; De Wolf F; Ghani AC; Garnett GP; Anderson RM
    J Theor Biol; 2002 Nov; 219(2):177-92. PubMed ID: 12413874
    [TBL] [Abstract][Full Text] [Related]  

  • 59. T-cell induced pathogenesis in HIV: bystander effects and latent infection.
    Krakauer DC; Nowak M
    Proc Biol Sci; 1999 May; 266(1423):1069-75. PubMed ID: 10380683
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Principles Governing Establishment versus Collapse of HIV-1 Cellular Spread.
    Hataye JM; Casazza JP; Best K; Liang CJ; Immonen TT; Ambrozak DR; Darko S; Henry AR; Laboune F; Maldarelli F; Douek DC; Hengartner NW; Yamamoto T; Keele BF; Perelson AS; Koup RA
    Cell Host Microbe; 2019 Dec; 26(6):748-763.e20. PubMed ID: 31761718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.