These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 9837704)
1. Mathematical models for motile bacterial transport in cylindrical tubes. Chen KC; Ford RM; Cummings PT J Theor Biol; 1998 Dec; 195(4):481-504. PubMed ID: 9837704 [TBL] [Abstract][Full Text] [Related]
2. The global turning probability density function for motile bacteria and its applications. Chen KC; Ford RM; Cummings PT J Theor Biol; 1998 Nov; 195(2):139-55. PubMed ID: 9822560 [TBL] [Abstract][Full Text] [Related]
3. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
4. Mathematical model for characterization of bacterial migration through sand cores. Barton JW; Ford RM Biotechnol Bioeng; 1997 Mar; 53(5):487-96. PubMed ID: 18634044 [TBL] [Abstract][Full Text] [Related]
5. Idling time of motile bacteria contributes to retardation and dispersion in sand porous medium. Liu J; Ford RM; Smith JA Environ Sci Technol; 2011 May; 45(9):3945-51. PubMed ID: 21456575 [TBL] [Abstract][Full Text] [Related]
6. A study of bacterial flagellar bundling. Flores H; Lobaton E; Méndez-Diez S; Tlupova S; Cortez R Bull Math Biol; 2005 Jan; 67(1):137-68. PubMed ID: 15691543 [TBL] [Abstract][Full Text] [Related]
7. Glass micromodel study of bacterial dispersion in spatially periodic porous networks. Lanning LM; Ford RM Biotechnol Bioeng; 2002 Jun; 78(5):556-66. PubMed ID: 12115125 [TBL] [Abstract][Full Text] [Related]
8. A coaxial tube model of the cerebrospinal fluid pulse propagation in the spinal column. Cirovic S J Biomech Eng; 2009 Feb; 131(2):021008. PubMed ID: 19102567 [TBL] [Abstract][Full Text] [Related]
9. Cell balance equation for chemotactic bacteria with a biphasic tumbling frequency. Chen KC; Ford RM; Cummings PT J Math Biol; 2003 Dec; 47(6):518-46. PubMed ID: 14618378 [TBL] [Abstract][Full Text] [Related]
10. Measurement of bacterial random motility and chemotaxis coefficients: II. Application of single-cell-based mathematical model. Ford RM; Lauffenburger DA Biotechnol Bioeng; 1991 Mar; 37(7):661-72. PubMed ID: 18600657 [TBL] [Abstract][Full Text] [Related]
11. Modeling physiological resistance in bacterial biofilms. Cogan NG; Cortez R; Fauci L Bull Math Biol; 2005 Jul; 67(4):831-53. PubMed ID: 15893555 [TBL] [Abstract][Full Text] [Related]
12. Revisiting the Münch pressure-flow hypothesis for long-distance transport of carbohydrates: modelling the dynamics of solute transport inside a semipermeable tube. Henton SM; Greaves AJ; Piller GJ; Minchin PE J Exp Bot; 2002 Jun; 53(373):1411-9. PubMed ID: 12021288 [TBL] [Abstract][Full Text] [Related]
13. Idling time of swimming bacteria near particulate surfaces contributes to apparent adsorption coefficients at the macroscopic scale under static conditions. Liu J; Ford RM Environ Sci Technol; 2009 Dec; 43(23):8874-80. PubMed ID: 19943660 [TBL] [Abstract][Full Text] [Related]
14. Impact of convective transport on dialyzer clearance. Galach M; Ciechanowska A; Sabalińska S; Waniewski J; Wójcicki J; Weryńskis A J Artif Organs; 2003; 6(1):42-8. PubMed ID: 14598124 [TBL] [Abstract][Full Text] [Related]
15. Transport and kinetic processes underlying biomolecular interactions in the BIACORE optical biosensor. Sikavitsas V; Nitsche JM; Mountziaris TJ Biotechnol Prog; 2002; 18(4):885-97. PubMed ID: 12153326 [TBL] [Abstract][Full Text] [Related]
16. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study. Brandt-Pollmann U; Lebiedz D; Diehl M; Sager S; Schlöder J Chaos; 2005 Sep; 15(3):33901. PubMed ID: 16252992 [TBL] [Abstract][Full Text] [Related]
17. Growth rate effects on fundamental transport properties of bacterial populations. Mercer JR; Ford RM; Stitz JL; Bradbeer C Biotechnol Bioeng; 1993 Dec; 42(11):1277-86. PubMed ID: 18612955 [TBL] [Abstract][Full Text] [Related]
18. Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? Cates ME Rep Prog Phys; 2012 Apr; 75(4):042601. PubMed ID: 22790505 [TBL] [Abstract][Full Text] [Related]
19. Cell orientation of swimming bacteria: from theoretical simulation to experimental evaluation. Ping L Sci China Life Sci; 2012 Mar; 55(3):202-9. PubMed ID: 22527516 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation. Nakashima Y; Nakano T; Nakamura K; Uesugi K; Tsuchiyama A; Ikeda S J Contam Hydrol; 2004 Oct; 74(1-4):253-64. PubMed ID: 15358495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]