These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 9837736)
1. Breaking the camel's back: proline-induced turns in a model transmembrane helix. Nilsson I; von Heijne G J Mol Biol; 1998 Dec; 284(4):1185-9. PubMed ID: 9837736 [TBL] [Abstract][Full Text] [Related]
2. Proline-induced disruption of a transmembrane alpha-helix in its natural environment. Nilsson I; Sääf A; Whitley P; Gafvelin G; Waller C; von Heijne G J Mol Biol; 1998 Dec; 284(4):1165-75. PubMed ID: 9837734 [TBL] [Abstract][Full Text] [Related]
3. Formation of helical hairpins during membrane protein integration into the endoplasmic reticulum membrane. Role of the N and C-terminal flanking regions. Hermansson M; Monné M; von Heijne G J Mol Biol; 2001 Nov; 313(5):1171-9. PubMed ID: 11700072 [TBL] [Abstract][Full Text] [Related]
4. Turns in transmembrane helices: determination of the minimal length of a "helical hairpin" and derivation of a fine-grained turn propensity scale. Monné M; Nilsson I; Elofsson A; von Heijne G J Mol Biol; 1999 Nov; 293(4):807-14. PubMed ID: 10543969 [TBL] [Abstract][Full Text] [Related]
5. Formation of cytoplasmic turns between two closely spaced transmembrane helices during membrane protein integration into the ER membrane. Sääf A; Hermansson M; von Heijne G J Mol Biol; 2000 Aug; 301(1):191-7. PubMed ID: 10926501 [TBL] [Abstract][Full Text] [Related]
6. The stability of transmembrane helix interactions measured in a biological membrane. Finger C; Volkmer T; Prodöhl A; Otzen DE; Engelman DM; Schneider D J Mol Biol; 2006 May; 358(5):1221-8. PubMed ID: 16574146 [TBL] [Abstract][Full Text] [Related]
7. Structural studies on the effects of the deletion in the red cell anion exchanger (band 3, AE1) associated with South East Asian ovalocytosis. Chambers EJ; Bloomberg GB; Ring SM; Tanner MJ J Mol Biol; 1999 Jan; 285(3):1289-307. PubMed ID: 9887277 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for intramembrane proteolysis by rhomboid serine proteases. Ben-Shem A; Fass D; Bibi E Proc Natl Acad Sci U S A; 2007 Jan; 104(2):462-6. PubMed ID: 17190827 [TBL] [Abstract][Full Text] [Related]
9. Quadratic minimization of predictors for protein secondary structure. Application to transmembrane alpha-helices. Edelman J J Mol Biol; 1993 Jul; 232(1):165-91. PubMed ID: 7687296 [TBL] [Abstract][Full Text] [Related]
10. Evidence that insertion of Tomato ringspot nepovirus NTB-VPg protein in endoplasmic reticulum membranes is directed by two domains: a C-terminal transmembrane helix and an N-terminal amphipathic helix. Zhang SC; Zhang G; Yang L; Chisholm J; Sanfaçon H J Virol; 2005 Sep; 79(18):11752-65. PubMed ID: 16140753 [TBL] [Abstract][Full Text] [Related]
11. The aromatic residues Trp and Phe have different effects on the positioning of a transmembrane helix in the microsomal membrane. Braun P; von Heijne G Biochemistry; 1999 Jul; 38(30):9778-82. PubMed ID: 10423258 [TBL] [Abstract][Full Text] [Related]
12. Wide turn diversity in protein transmembrane helices implications for G-protein-coupled receptor and other polytopic membrane protein structure and function. Riek RP; Finch AA; Begg GE; Graham RM Mol Pharmacol; 2008 Apr; 73(4):1092-104. PubMed ID: 18202304 [TBL] [Abstract][Full Text] [Related]
13. Charge pair interactions in a model transmembrane helix in the ER membrane. Chin CN; von Heijne G J Mol Biol; 2000 Oct; 303(1):1-5. PubMed ID: 11021965 [TBL] [Abstract][Full Text] [Related]
14. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library. Leeds JA; Boyd D; Huber DR; Sonoda GK; Luu HT; Engelman DM; Beckwith J J Mol Biol; 2001 Oct; 313(1):181-95. PubMed ID: 11601855 [TBL] [Abstract][Full Text] [Related]
15. A turn propensity scale for transmembrane helices. Monné M; Hermansson M; von Heijne G J Mol Biol; 1999 Apr; 288(1):141-5. PubMed ID: 10329132 [TBL] [Abstract][Full Text] [Related]
16. Positively and negatively charged residues have different effects on the position in the membrane of a model transmembrane helix. Monné M; Nilsson I; Johansson M; Elmhed N; von Heijne G J Mol Biol; 1998 Dec; 284(4):1177-83. PubMed ID: 9837735 [TBL] [Abstract][Full Text] [Related]
18. Proprotein convertase PC3 is not a transmembrane protein. Stettler H; Suri G; Spiess M Biochemistry; 2005 Apr; 44(14):5339-45. PubMed ID: 15807527 [TBL] [Abstract][Full Text] [Related]
19. The transmembrane helices of the L, M, and N subunits of Complex I from E. coli can be assigned on the basis of conservation and hydrophobic moment analysis. Vik SB FEBS Lett; 2011 Apr; 585(8):1180-4. PubMed ID: 21420404 [TBL] [Abstract][Full Text] [Related]
20. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Wu Z; Yan N; Feng L; Oberstein A; Yan H; Baker RP; Gu L; Jeffrey PD; Urban S; Shi Y Nat Struct Mol Biol; 2006 Dec; 13(12):1084-91. PubMed ID: 17099694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]