BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9837736)

  • 1. Breaking the camel's back: proline-induced turns in a model transmembrane helix.
    Nilsson I; von Heijne G
    J Mol Biol; 1998 Dec; 284(4):1185-9. PubMed ID: 9837736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proline-induced disruption of a transmembrane alpha-helix in its natural environment.
    Nilsson I; Sääf A; Whitley P; Gafvelin G; Waller C; von Heijne G
    J Mol Biol; 1998 Dec; 284(4):1165-75. PubMed ID: 9837734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of helical hairpins during membrane protein integration into the endoplasmic reticulum membrane. Role of the N and C-terminal flanking regions.
    Hermansson M; Monné M; von Heijne G
    J Mol Biol; 2001 Nov; 313(5):1171-9. PubMed ID: 11700072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turns in transmembrane helices: determination of the minimal length of a "helical hairpin" and derivation of a fine-grained turn propensity scale.
    Monné M; Nilsson I; Elofsson A; von Heijne G
    J Mol Biol; 1999 Nov; 293(4):807-14. PubMed ID: 10543969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of cytoplasmic turns between two closely spaced transmembrane helices during membrane protein integration into the ER membrane.
    Sääf A; Hermansson M; von Heijne G
    J Mol Biol; 2000 Aug; 301(1):191-7. PubMed ID: 10926501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stability of transmembrane helix interactions measured in a biological membrane.
    Finger C; Volkmer T; Prodöhl A; Otzen DE; Engelman DM; Schneider D
    J Mol Biol; 2006 May; 358(5):1221-8. PubMed ID: 16574146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies on the effects of the deletion in the red cell anion exchanger (band 3, AE1) associated with South East Asian ovalocytosis.
    Chambers EJ; Bloomberg GB; Ring SM; Tanner MJ
    J Mol Biol; 1999 Jan; 285(3):1289-307. PubMed ID: 9887277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for intramembrane proteolysis by rhomboid serine proteases.
    Ben-Shem A; Fass D; Bibi E
    Proc Natl Acad Sci U S A; 2007 Jan; 104(2):462-6. PubMed ID: 17190827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quadratic minimization of predictors for protein secondary structure. Application to transmembrane alpha-helices.
    Edelman J
    J Mol Biol; 1993 Jul; 232(1):165-91. PubMed ID: 7687296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that insertion of Tomato ringspot nepovirus NTB-VPg protein in endoplasmic reticulum membranes is directed by two domains: a C-terminal transmembrane helix and an N-terminal amphipathic helix.
    Zhang SC; Zhang G; Yang L; Chisholm J; Sanfaçon H
    J Virol; 2005 Sep; 79(18):11752-65. PubMed ID: 16140753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The aromatic residues Trp and Phe have different effects on the positioning of a transmembrane helix in the microsomal membrane.
    Braun P; von Heijne G
    Biochemistry; 1999 Jul; 38(30):9778-82. PubMed ID: 10423258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wide turn diversity in protein transmembrane helices implications for G-protein-coupled receptor and other polytopic membrane protein structure and function.
    Riek RP; Finch AA; Begg GE; Graham RM
    Mol Pharmacol; 2008 Apr; 73(4):1092-104. PubMed ID: 18202304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge pair interactions in a model transmembrane helix in the ER membrane.
    Chin CN; von Heijne G
    J Mol Biol; 2000 Oct; 303(1):1-5. PubMed ID: 11021965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library.
    Leeds JA; Boyd D; Huber DR; Sonoda GK; Luu HT; Engelman DM; Beckwith J
    J Mol Biol; 2001 Oct; 313(1):181-95. PubMed ID: 11601855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A turn propensity scale for transmembrane helices.
    Monné M; Hermansson M; von Heijne G
    J Mol Biol; 1999 Apr; 288(1):141-5. PubMed ID: 10329132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positively and negatively charged residues have different effects on the position in the membrane of a model transmembrane helix.
    Monné M; Nilsson I; Johansson M; Elmhed N; von Heijne G
    J Mol Biol; 1998 Dec; 284(4):1177-83. PubMed ID: 9837735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane-insertion fragments of Bcl-xL, Bax, and Bid.
    García-Sáez AJ; Mingarro I; Pérez-Payá E; Salgado J
    Biochemistry; 2004 Aug; 43(34):10930-43. PubMed ID: 15323553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proprotein convertase PC3 is not a transmembrane protein.
    Stettler H; Suri G; Spiess M
    Biochemistry; 2005 Apr; 44(14):5339-45. PubMed ID: 15807527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transmembrane helices of the L, M, and N subunits of Complex I from E. coli can be assigned on the basis of conservation and hydrophobic moment analysis.
    Vik SB
    FEBS Lett; 2011 Apr; 585(8):1180-4. PubMed ID: 21420404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry.
    Wu Z; Yan N; Feng L; Oberstein A; Yan H; Baker RP; Gu L; Jeffrey PD; Urban S; Shi Y
    Nat Struct Mol Biol; 2006 Dec; 13(12):1084-91. PubMed ID: 17099694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.