These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 9837739)

  • 1. Three-dimensional profiles: a new tool to identify protein surface similarities.
    de Rinaldis M; Ausiello G; Cesareni G; Helmer-Citterich M
    J Mol Biol; 1998 Dec; 284(4):1211-21. PubMed ID: 9837739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SH3-SPOT: an algorithm to predict preferred ligands to different members of the SH3 gene family.
    Brannetti B; Via A; Cestra G; Cesareni G; Helmer-Citterich M
    J Mol Biol; 2000 Apr; 298(2):313-28. PubMed ID: 10764600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evolutionary trace method defines binding surfaces common to protein families.
    Lichtarge O; Bourne HR; Cohen FE
    J Mol Biol; 1996 Mar; 257(2):342-58. PubMed ID: 8609628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional view of the surface motif associated with the P-loop structure: cis and trans cases of convergent evolution.
    Via A; Ferrè F; Brannetti B; Valencia A; Helmer-Citterich M
    J Mol Biol; 2000 Nov; 303(4):455-65. PubMed ID: 11054283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supersites within superfolds. Binding site similarity in the absence of homology.
    Russell RB; Sasieni PD; Sternberg MJ
    J Mol Biol; 1998 Oct; 282(4):903-18. PubMed ID: 9743635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein loops on structurally similar scaffolds: database and conformational analysis.
    Li W; Liu Z; Lai L
    Biopolymers; 1999 May; 49(6):481-95. PubMed ID: 10193195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The identification of conserved interactions within the SH3 domain by alignment of sequences and structures.
    Larson SM; Davidson AR
    Protein Sci; 2000 Nov; 9(11):2170-80. PubMed ID: 11152127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information.
    Armon A; Graur D; Ben-Tal N
    J Mol Biol; 2001 Mar; 307(1):447-63. PubMed ID: 11243830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization.
    Henriques DA; Ladbury JE; Jackson RM
    Protein Sci; 2000 Oct; 9(10):1975-85. PubMed ID: 11106171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein structure mining using a structural alphabet.
    Tyagi M; de Brevern AG; Srinivasan N; Offmann B
    Proteins; 2008 May; 71(2):920-37. PubMed ID: 18004784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid recognition by Venus flytrap domains is encoded in an 8-residue motif.
    Acher FC; Bertrand HO
    Biopolymers; 2005; 80(2-3):357-66. PubMed ID: 15810013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SH2 binding site comparison: a new application of the SURFCOMP method.
    Hofbauer C; Aszódi A
    J Chem Inf Model; 2005; 45(2):414-21. PubMed ID: 15807507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches.
    Aravind L; Koonin EV
    J Mol Biol; 1999 Apr; 287(5):1023-40. PubMed ID: 10222208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary structure-based profiles: use of structure-conserving scoring tables in searching protein sequence databases for structural similarities.
    Lüthy R; McLachlan AD; Eisenberg D
    Proteins; 1991; 10(3):229-39. PubMed ID: 1881879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences.
    Maurer-Stroh S; Eisenhaber B; Eisenhaber F
    J Mol Biol; 2002 Apr; 317(4):523-40. PubMed ID: 11955007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo protein design. II. Plasticity in sequence space.
    Koehl P; Levitt M
    J Mol Biol; 1999 Nov; 293(5):1183-93. PubMed ID: 10547294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile retargeting of SH3 domain binding by modification of non-conserved loop residues.
    Hiipakka M; Saksela K
    FEBS Lett; 2007 May; 581(9):1735-41. PubMed ID: 17418138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective connectivity profile: a structural representation that evidences the relationship between protein structures and sequences.
    Bastolla U; Ortíz AR; Porto M; Teichert F
    Proteins; 2008 Dec; 73(4):872-88. PubMed ID: 18536008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.