These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 9837897)
1. Characterization of recombinant rabbit cardiac and skeletal muscle Ca2+ release channels (ryanodine receptors) with a novel [3H]ryanodine binding assay. Du GG; Imredy JP; MacLennan DH J Biol Chem; 1998 Dec; 273(50):33259-66. PubMed ID: 9837897 [TBL] [Abstract][Full Text] [Related]
2. Ca(2+) inactivation sites are located in the COOH-terminal quarter of recombinant rabbit skeletal muscle Ca(2+) release channels (ryanodine receptors). Du GG; MacLennan DH J Biol Chem; 1999 Sep; 274(37):26120-6. PubMed ID: 10473562 [TBL] [Abstract][Full Text] [Related]
3. Mutations to Gly2370, Gly2373 or Gly2375 in malignant hyperthermia domain 2 decrease caffeine and cresol sensitivity of the rabbit skeletal-muscle Ca2+-release channel (ryanodine receptor isoform 1). Du GG; Oyamada H; Khanna VK; MacLennan DH Biochem J; 2001 Nov; 360(Pt 1):97-105. PubMed ID: 11695996 [TBL] [Abstract][Full Text] [Related]
4. Single-channel characterization of the rabbit recombinant RyR2 reveals a novel inactivation property of physiological concentrations of ATP. Stewart R; Song L; Carter SM; Sigalas C; Zaccai NR; Kanamarlapudi V; Bhat MB; Takeshima H; Sitsapesan R J Membr Biol; 2008 Mar; 222(2):65-77. PubMed ID: 18418540 [TBL] [Abstract][Full Text] [Related]
5. Characterization of recombinant skeletal muscle (Ser-2843) and cardiac muscle (Ser-2809) ryanodine receptor phosphorylation mutants. Stange M; Xu L; Balshaw D; Yamaguchi N; Meissner G J Biol Chem; 2003 Dec; 278(51):51693-702. PubMed ID: 14532276 [TBL] [Abstract][Full Text] [Related]
6. Functional expression of recombinant type 1 ryanodine receptor in insect cells. Antaramián A; Butanda-Ochoa A; Vázquez-Martínez O; Díaz-Muñoz M; Vaca L Cell Calcium; 2001 Jul; 30(1):9-17. PubMed ID: 11396983 [TBL] [Abstract][Full Text] [Related]
8. Dantrolene inhibition of ryanodine receptor Ca2+ release channels. Molecular mechanism and isoform selectivity. Zhao F; Li P; Chen SR; Louis CF; Fruen BR J Biol Chem; 2001 Apr; 276(17):13810-6. PubMed ID: 11278295 [TBL] [Abstract][Full Text] [Related]
9. Differential activation by Ca2+, ATP and caffeine of cardiac and skeletal muscle ryanodine receptors after block by Mg2+. Copello JA; Barg S; Sonnleitner A; Porta M; Diaz-Sylvester P; Fill M; Schindler H; Fleischer S J Membr Biol; 2002 May; 187(1):51-64. PubMed ID: 12029377 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the ryanodine receptor-Ca2+ release channel from the thoracic tissues of the lepidopteran insect Heliothis virescens. Scott-Ward TS; Dunbar SJ; Windass JD; Williams AJ J Membr Biol; 2001 Jan; 179(2):127-41. PubMed ID: 11220363 [TBL] [Abstract][Full Text] [Related]
11. Conformational coupling of DHPR and RyR1 in skeletal myotubes is influenced by long-range allosterism: evidence for a negative regulatory module. Lee EH; Lopez JR; Li J; Protasi F; Pessah IN; Kim DH; Allen PD Am J Physiol Cell Physiol; 2004 Jan; 286(1):C179-89. PubMed ID: 13679303 [TBL] [Abstract][Full Text] [Related]
12. A central core disease mutation in the Ca Chirasani VR; Xu L; Addis HG; Pasek DA; Dokholyan NV; Meissner G; Yamaguchi N Am J Physiol Cell Physiol; 2019 Aug; 317(2):C358-C365. PubMed ID: 31166712 [TBL] [Abstract][Full Text] [Related]
13. Halothane modulation of skeletal muscle ryanodine receptors: dependence on Ca2+, Mg2+, and ATP. Diaz-Sylvester PL; Porta M; Copello JA Am J Physiol Cell Physiol; 2008 Apr; 294(4):C1103-12. PubMed ID: 18305228 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a calcium-regulation domain of the skeletal-muscle ryanodine receptor. Hayek SM; Zhu X; Bhat MB; Zhao J; Takeshima H; Valdivia HH; Ma J Biochem J; 2000 Oct; 351(Pt 1):57-65. PubMed ID: 10998347 [TBL] [Abstract][Full Text] [Related]
15. A mutation in the transmembrane/luminal domain of the ryanodine receptor is associated with abnormal Ca2+ release channel function and severe central core disease. Lynch PJ; Tong J; Lehane M; Mallet A; Giblin L; Heffron JJ; Vaughan P; Zafra G; MacLennan DH; McCarthy TV Proc Natl Acad Sci U S A; 1999 Mar; 96(7):4164-9. PubMed ID: 10097181 [TBL] [Abstract][Full Text] [Related]
16. Caffeine and halothane sensitivity of intracellular Ca2+ release is altered by 15 calcium release channel (ryanodine receptor) mutations associated with malignant hyperthermia and/or central core disease. Tong J; Oyamada H; Demaurex N; Grinstein S; McCarthy TV; MacLennan DH J Biol Chem; 1997 Oct; 272(42):26332-9. PubMed ID: 9334205 [TBL] [Abstract][Full Text] [Related]
17. Localization of PKA phosphorylation site, Ser(2030), in the three-dimensional structure of cardiac ryanodine receptor. Jones PP; Meng X; Xiao B; Cai S; Bolstad J; Wagenknecht T; Liu Z; Chen SR Biochem J; 2008 Mar; 410(2):261-70. PubMed ID: 17967164 [TBL] [Abstract][Full Text] [Related]
19. Modification of sulfhydryls of the skeletal muscle calcium release channel by organic mercurial compounds alters Ca2+ affinity of regulatory Ca2+ sites in single channel recordings and [3H]ryanodine binding. Suko J; Hellmann G Biochim Biophys Acta; 1998 Sep; 1404(3):435-50. PubMed ID: 9739172 [TBL] [Abstract][Full Text] [Related]
20. Effects of small molecule modulators on ATP binding to skeletal ryanodine receptor. Dias JM; Vogel PD Protein J; 2009 Jun; 28(5):240-6. PubMed ID: 19636685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]