These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9838124)

  • 1. Presence of nicotinic acetylcholine receptors in cat carotid body afferent system.
    Shirahata M; Ishizawa Y; Rudisill M; Schofield B; Fitzgerald RS
    Brain Res; 1998 Dec; 814(1-2):213-7. PubMed ID: 9838124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of nicotinic acetylcholine receptors in cat carotid body and petrosal ganglion.
    Ishizawa Y; Fitzgerald RS; Shirahata M; Schofield B
    Adv Exp Med Biol; 1996; 410():253-6. PubMed ID: 9030307
    [No Abstract]   [Full Text] [Related]  

  • 3. Identification of M1 and M2 muscarinic acetylcholine receptors in the cat carotid body chemosensory system.
    Shirahata M; Hirasawa S; Okumura M; Mendoza JA; Okumura A; Balbir A; Fitzgerald RS
    Neuroscience; 2004; 128(3):635-44. PubMed ID: 15381291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmitter diversity in carotid body afferent neurons: dopaminergic and peptidergic phenotypes.
    Finley JC; Polak J; Katz DM
    Neuroscience; 1992 Dec; 51(4):973-87. PubMed ID: 1283213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presence and coexistence of putative neurotransmitters in carotid sinus baro- and chemoreceptor afferent neurons.
    Ichikawa H; Rabchevsky A; Helke CJ
    Brain Res; 1993 May; 611(1):67-74. PubMed ID: 8100177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective activation of carotid nerve fibers by acetylcholine applied to the cat petrosal ganglion in vitro.
    Alcayaga J; Iturriaga R; Varas R; Arroyo J; Zapata P
    Brain Res; 1998 Mar; 786(1-2):47-54. PubMed ID: 9554949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The co-existence of biogenic amines and neuropeptides in the type I cells of the cat carotid body.
    Wang ZZ; Stensaas LJ; Dinger B; Fidone SJ
    Neuroscience; 1992; 47(2):473-80. PubMed ID: 1379355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotransmission in the carotid body: transmitters and modulators between glomus cells and petrosal ganglion nerve terminals.
    Iturriaga R; Alcayaga J
    Brain Res Brain Res Rev; 2004 Dec; 47(1-3):46-53. PubMed ID: 15572162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of nicotinic acetylcholine receptors in cultured arterial chemoreceptor cells of the cat.
    Higashi T; McIntosh JM; Shirahata M
    Brain Res; 2003 Jun; 974(1-2):167-75. PubMed ID: 12742634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axonal transport of labeled material into sensory nerve ending of cat carotid body.
    Fidone SJ; Zapata P; Stensaas LJ
    Brain Res; 1977 Mar; 124(1):9-28. PubMed ID: 66087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructure of calcitonin gene-related peptide-immunoreactive, unmyelinated afferents to the cat carotid body: a case of volume transmission.
    Torrealba F; Correa R
    Neuroscience; 1995 Feb; 64(3):777-85. PubMed ID: 7715786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological characterization of nicotinic acetylcholine receptors in cat petrosal ganglion neurons in culture: effects of cytisine and its bromo derivatives.
    Varas R; Valdés V; Iturriaga-Vásquez P; Cassels BK; Iturriaga R; Alcayaga J
    Brain Res; 2006 Feb; 1072(1):72-8. PubMed ID: 16406013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP- and ACh-induced responses in isolated cat petrosal ganglion neurons.
    Alcayaga C; Varas R; Valdés V; Cerpa V; Arroyo J; Iturriaga R; Alcayaga J
    Brain Res; 2007 Feb; 1131(1):60-7. PubMed ID: 17184746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of transient receptor potential channels in the rat carotid chemosensory pathway.
    Buniel MC; Schilling WP; Kunze DL
    J Comp Neurol; 2003 Sep; 464(3):404-13. PubMed ID: 12900933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of prolonged hypobaric hypoxia on carotid nerve endings and glomus cells. Changes in intercellular coupling.
    Jiang RG; Eyzaguirre C
    Brain Res; 2006 Mar; 1076(1):198-208. PubMed ID: 16472784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of dopamine from carotid sinus nerve fibers innervating type I cells in the cat carotid body.
    Almaraz L; Wang ZZ; Stensaas LJ; Fidone SJ
    Biol Signals; 1993; 2(1):16-26. PubMed ID: 8102579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental pattern of M1 and M2 muscarinic gene expression and receptor levels in cat carotid body, petrosal and superior cervical ganglion.
    Bairam A; Joseph V; Lajeunesse Y; Kinkead R
    Neuroscience; 2006 May; 139(2):711-21. PubMed ID: 16457956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nicotinic acetylcholine receptor subtypes in the rat sympathetic ganglion: pharmacological characterization, subcellular distribution and effect of pre- and postganglionic nerve crush.
    Del Signore A; Gotti C; Rizzo A; Moretti M; Paggi P
    J Neuropathol Exp Neurol; 2004 Feb; 63(2):138-50. PubMed ID: 14989600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulatory effects of histamine on cat carotid body chemoreception.
    Del Rio R; Moya EA; Koenig CS; Fujiwara K; Alcayaga J; Iturriaga R
    Respir Physiol Neurobiol; 2008 Dec; 164(3):401-10. PubMed ID: 18824142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopaminergic and peptidergic sensory innervation of the rat carotid body: organization and development.
    Katz DM; Finley JC; Polak J
    Adv Exp Med Biol; 1993; 337():43-9. PubMed ID: 7906487
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.