These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 9839024)
1. Chemical modification of beta-glucocerebrosidase inhibitor N-octyl-beta-valienamine: synthesis and biological evaluation of N-alkanoyl and N-alkyl derivatives. Ogawa S; Kobayashi Y; Kabayama K; Jimbo M; Inokuchi J Bioorg Med Chem; 1998 Oct; 6(10):1955-62. PubMed ID: 9839024 [TBL] [Abstract][Full Text] [Related]
2. Chemical modification of the beta-glucocerebrosidase inhibitor N-octyl-beta-valienamine: synthesis and biological evaluation of 4-epimeric and 4-O-(beta-D-galactopyranosyl) derivatives. Ogawa S; Matsunaga YK; Suzuki Y Bioorg Med Chem; 2002 Jun; 10(6):1967-72. PubMed ID: 11937356 [TBL] [Abstract][Full Text] [Related]
3. Transformation of quercitols into 4-methylenecyclohex-5-ene-1,2,3-triol derivatives, precursors for the chemical chaperones N-octyl-4-epi-β-valienamine (NOEV) and N-octyl-β-valienamine (NOV). Kuno S; Takahashi A; Ogawa S Bioorg Med Chem Lett; 2011 Dec; 21(23):7189-92. PubMed ID: 22001090 [TBL] [Abstract][Full Text] [Related]
4. Development and medical application of unsaturated carbaglycosylamine glycosidase inhibitors. Ogawa S; Kanto M; Suzuki Y Mini Rev Med Chem; 2007 Jul; 7(7):679-91. PubMed ID: 17627580 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of an alpha-fucosidase inhibitor, 5a-carba-beta-L-fucopyranosylamine, and fucose-type alpha- and beta-DL-valienamine unsaturated derivatives. Ogawa S; Watanabe M; Maruyama A; Hisamatsu S Bioorg Med Chem Lett; 2002 Mar; 12(5):749-52. PubMed ID: 11858994 [TBL] [Abstract][Full Text] [Related]
6. Convenient synthesis and evaluation of glycosidase inhibitory activity of alpha- and beta-galactose-type valienamines, and some N-alkyl derivatives. Ogawa S; Sakata Y; Ito N; Watanabe M; Kabayama K; Itoh M; Korenaga T Bioorg Med Chem; 2004 Mar; 12(5):995-1002. PubMed ID: 14980612 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and α-Glucosidase II inhibitory activity of valienamine pseudodisaccharides relevant to N-glycan biosynthesis. Cumpstey I; Ramstadius C; Eszter Borbas K; Alonzi DS; Butters TD Bioorg Med Chem Lett; 2011 Sep; 21(18):5219-23. PubMed ID: 21840710 [TBL] [Abstract][Full Text] [Related]
8. The pharmacological chaperone effect of N-octyl-beta-valienamine on human mutant acid beta-glucosidases. Luan Z; Li L; Ninomiya H; Ohno K; Ogawa S; Kubo T; Iida M; Suzuki Y Blood Cells Mol Dis; 2010 Jan; 44(1):48-54. PubMed ID: 19857976 [TBL] [Abstract][Full Text] [Related]
9. Search for alpha-glucosidase inhibitors: new N-substituted valienamine and conduramine F-1 derivatives. Łysek R; Schütz C; Favre S; O'Sullivan AC; Pillonel C; Krülle T; Jung PM; Clotet-Codina I; Esté JA; Vogel P Bioorg Med Chem; 2006 Sep; 14(18):6255-82. PubMed ID: 16797996 [TBL] [Abstract][Full Text] [Related]
11. A 1-acetamido derivative of 6-epi-valienamine: an inhibitor of a diverse group of beta-N-acetylglucosaminidases. Scaffidi A; Stubbs KA; Dennis RJ; Taylor EJ; Davies GJ; Vocadlo DJ; Stick RV Org Biomol Chem; 2007 Sep; 5(18):3013-9. PubMed ID: 17728868 [TBL] [Abstract][Full Text] [Related]
12. The effect of N-octyl-β-valienamine on β-glucosidase activity in tissues of normal mice. Luan Z; Ninomiya H; Ohno K; Ogawa S; Kubo T; Iida M; Suzuki Y Brain Dev; 2010 Nov; 32(10):805-9. PubMed ID: 20074885 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and evaluation of hydroxymethylaminocyclitols as glycosidase inhibitors. Trapero A; Egido-Gabás M; Bujons J; Llebaria A J Org Chem; 2015 Apr; 80(7):3512-29. PubMed ID: 25750987 [TBL] [Abstract][Full Text] [Related]
14. Concise syntheses of potent chaperone drug candidates, N-octyl-4-epi-β-valinenamine (NOEV) and its 6-deoxy derivative, from (+)-proto-quercitol. Kuno S; Takahashi A; Ogawa S Carbohydr Res; 2013 Mar; 368():8-15. PubMed ID: 23314299 [TBL] [Abstract][Full Text] [Related]
15. N-Guanidino Derivatives of 1,5-Dideoxy-1,5-imino-d-xylitol are Potent, Selective, and Stable Inhibitors of β-Glucocerebrosidase. Sevšek A; Šrot L; Rihter J; Čelan M; van Ufford LQ; Moret EE; Martin NI; Pieters RJ ChemMedChem; 2017 Apr; 12(7):483-486. PubMed ID: 28328014 [TBL] [Abstract][Full Text] [Related]
16. Combinatorial approach to N-substituted aminocyclitol libraries by solution-phase parallel synthesis and preliminary evaluation as glucocerebrosidase inhibitors. Serrano P; Casas J; Zucco M; Emeric G; Egido-Gabás M; Llebaria A; Delgado A J Comb Chem; 2007; 9(1):43-52. PubMed ID: 17206831 [TBL] [Abstract][Full Text] [Related]
17. Human melanoma and Chinese hamster ovary cells galactosylate n-alkyl-beta-glucosides using UDP gal:GlcNAc beta 1,4 galactosyltransferase. Pörtner A; Etchison JR; Sampath D; Freeze HH Glycobiology; 1996 Jan; 6(1):7-13. PubMed ID: 8991512 [TBL] [Abstract][Full Text] [Related]
18. N-Alkylated aziridines are easily-prepared, potent, specific and cell-permeable covalent inhibitors of human β-glucocerebrosidase. Adams BT; Niccoli S; Chowdhury MA; Esarik AN; Lees SJ; Rempel BP; Phenix CP Chem Commun (Camb); 2015 Jul; 51(57):11390-3. PubMed ID: 26085065 [TBL] [Abstract][Full Text] [Related]
19. Bicyclic isoureas derived from 1-deoxynojirimycin are potent inhibitors of β-glucocerebrosidase. Sevšek A; Čelan M; Erjavec B; Quarles van Ufford L; Sastre Toraño J; Moret EE; Pieters RJ; Martin NI Org Biomol Chem; 2016 Oct; 14(37):8670-3. PubMed ID: 27604065 [TBL] [Abstract][Full Text] [Related]
20. Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase. Overkleeft HS; Renkema GH; Neele J; Vianello P; Hung IO; Strijland A; van der Burg AM; Koomen GJ; Pandit UK; Aerts JM J Biol Chem; 1998 Oct; 273(41):26522-7. PubMed ID: 9756888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]