These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 9839241)
1. Micelle stability: kappa-casein structure and function. Creamer LK; Plowman JE; Liddell MJ; Smith MH; Hill JP J Dairy Sci; 1998 Nov; 81(11):3004-12. PubMed ID: 9839241 [TBL] [Abstract][Full Text] [Related]
2. Interaction between casein micelles and whey protein/κ-casein complexes during renneting of heat-treated reconstituted skim milk powder and casein micelle/serum mixtures. Kethireddipalli P; Hill AR; Dalgleish DG J Agric Food Chem; 2011 Feb; 59(4):1442-8. PubMed ID: 21287987 [TBL] [Abstract][Full Text] [Related]
3. Limited enzymatic treatment of skim milk using chymosin affects the micelle/serum distribution of the heat-induced whey protein/kappa-casein aggregates. Renan M; Guyomarc'h F; Chatriot M; Gamerre V; Famelart MH J Agric Food Chem; 2007 Aug; 55(16):6736-45. PubMed ID: 17658821 [TBL] [Abstract][Full Text] [Related]
4. A study on bovine kappa-casein aggregation after the enzymatic action of chymosin. Hidalgo ME; Pires MS; Risso PH Colloids Surf B Biointerfaces; 2010 Apr; 76(2):556-63. PubMed ID: 20083396 [TBL] [Abstract][Full Text] [Related]
5. Alterations of the physical characteristics of milk from transgenic mice producing bovine kappa-casein. Gutiérrez-Adán A; Maga EA; Meade H; Shoemaker CF; Medrano JF; Anderson GB; Murray JD J Dairy Sci; 1996 May; 79(5):791-9. PubMed ID: 8792278 [TBL] [Abstract][Full Text] [Related]
6. Acid gelation properties of heated skim milk as a result of enzymatically induced changes in the micelle/serum distribution of the whey protein/kappa-casein aggregates. Guyomarc'h F; Renan M; Chatriot M; Gamerre V; Famelart MH J Agric Food Chem; 2007 Dec; 55(26):10986-93. PubMed ID: 18038987 [TBL] [Abstract][Full Text] [Related]
7. Epitope characterization of a supramolecular protein assembly with a collection of monoclonal antibodies: the case of casein micelle. Johansson A; Lugand D; Rolet-Répécaud O; Mollé D; Delage MM; Peltre G; Marchesseau S; Léonil J; Dupont D Mol Immunol; 2009 Mar; 46(6):1058-66. PubMed ID: 18992943 [TBL] [Abstract][Full Text] [Related]
9. Study on milk-clotting mechanism of rennet-like enzyme from glutinous rice wine: proteolytic property and the cleavage site on kappa-casein. Jiang T; Chen LJ; Xue L; Chen LS J Dairy Sci; 2007 Jul; 90(7):3126-33. PubMed ID: 17582094 [TBL] [Abstract][Full Text] [Related]
10. Proteolytic activity of proteinases on macropeptide isolated from kappa-casein. Shammet KM; Brown RJ; McMahon DJ J Dairy Sci; 1992 Jun; 75(6):1380-8. PubMed ID: 1500545 [TBL] [Abstract][Full Text] [Related]
11. Formation of reconstituted casein micelles with human beta-caseins and bovine kappa-casein. Sood SM; Erickson G; Slattery CW J Dairy Sci; 2002 Mar; 85(3):472-7. PubMed ID: 11949848 [TBL] [Abstract][Full Text] [Related]
12. Genetic variation and posttranslational modification of bovine κ-casein: effects on caseino-macropeptide release during renneting. Jensen HB; Pedersen KS; Johansen LB; Poulsen NA; Bakman M; Chatterton DE; Larsen LB J Dairy Sci; 2015 Feb; 98(2):747-58. PubMed ID: 25497797 [TBL] [Abstract][Full Text] [Related]
13. Kappa-casein interactions in the suspension of the two major calcium-sensitive human beta-caseins. Sood SM; Erickson G; Slattery CW J Dairy Sci; 2003 Jul; 86(7):2269-75. PubMed ID: 12906042 [TBL] [Abstract][Full Text] [Related]
14. Contributions of terminal peptides to the associative behavior of alphas1-casein. Malin EL; Brown EM; Wickham ED; Farrell HM J Dairy Sci; 2005 Jul; 88(7):2318-28. PubMed ID: 15956295 [TBL] [Abstract][Full Text] [Related]
15. On heating milk, the dissociation of kappa-casein from the casein micelles can precede interactions with the denatured whey proteins. Anema SG J Dairy Res; 2008 Nov; 75(4):415-21. PubMed ID: 18701003 [TBL] [Abstract][Full Text] [Related]
16. Bovine chymosin: a computational study of recognition and binding of bovine kappa-casein. Palmer DS; Christensen AU; Sørensen J; Celik L; Qvist KB; Schiøtt B Biochemistry; 2010 Mar; 49(11):2563-73. PubMed ID: 20155951 [TBL] [Abstract][Full Text] [Related]
17. Heat-induced redistribution of disulfide bonds in milk proteins. 2. Disulfide bonding patterns between bovine beta-lactoglobulin and kappa-casein. Lowe EK; Anema SG; Bienvenue A; Boland MJ; Creamer LK; Jiménez-Flores R J Agric Food Chem; 2004 Dec; 52(25):7669-80. PubMed ID: 15675819 [TBL] [Abstract][Full Text] [Related]
18. Chemical synthesis and structure elucidation of bovine kappa-casein (1-44). Bansal PS; Grieve PA; Marschke RJ; Daly NL; McGhie E; Craik DJ; Alewood PF Biochem Biophys Res Commun; 2006 Feb; 340(4):1098-103. PubMed ID: 16403439 [TBL] [Abstract][Full Text] [Related]
19. Structure and dynamics of micelle-bound neuropeptide Y: comparison with unligated NPY and implications for receptor selection. Bader R; Bettio A; Beck-Sickinger AG; Zerbe O J Mol Biol; 2001 Jan; 305(2):307-29. PubMed ID: 11124908 [TBL] [Abstract][Full Text] [Related]
20. Caseinomacropeptide self-association is dependent on whether the peptide is free or restricted in kappa-casein. Mikkelsen TL; Frøkiaer H; Topp C; Bonomi F; Iametti S; Picariello G; Ferranti P; Barkholt V J Dairy Sci; 2005 Dec; 88(12):4228-38. PubMed ID: 16291614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]