These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 9839377)
1. The virulence of Staphylococcus aureus isolates differing by siderophore production. Rózalska B; Lisiecki P; Sadowska B; Mikucki J; Rudnicka W Acta Microbiol Pol; 1998; 47(2):185-94. PubMed ID: 9839377 [TBL] [Abstract][Full Text] [Related]
2. Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa. Harrison F; Paul J; Massey RC; Buckling A ISME J; 2008 Jan; 2(1):49-55. PubMed ID: 18180746 [TBL] [Abstract][Full Text] [Related]
3. Growth of Staphylococcus aureus with defective siderophore production in human peritoneal dialysate solution. Park RY; Sun HY; Choi MH; Bae YH; Shin SH J Microbiol; 2005 Feb; 43(1):54-61. PubMed ID: 15765059 [TBL] [Abstract][Full Text] [Related]
4. The influence of iron occurring in the growth medium of Staphylococcus aureus on the bacterial adhesion to collagen. Krajewska-Pietrasik D; Sobiś-Glinkowska M; Sidorczyk Z; Mikucki J Acta Microbiol Pol; 1997; 46(4):349-56. PubMed ID: 9516982 [TBL] [Abstract][Full Text] [Related]
5. Effects of toxin production in a murine model of Staphylococcus aureus keratitis. Girgis DO; Sloop GD; Reed JM; O'Callaghan RJ Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):2064-70. PubMed ID: 15914624 [TBL] [Abstract][Full Text] [Related]
6. Role of siderophore biosynthesis in virulence of Staphylococcus aureus: identification and characterization of genes involved in production of a siderophore. Dale SE; Doherty-Kirby A; Lajoie G; Heinrichs DE Infect Immun; 2004 Jan; 72(1):29-37. PubMed ID: 14688077 [TBL] [Abstract][Full Text] [Related]
7. Staphylococcus aureus siderophore-mediated iron-acquisition system plays a dominant and essential role in the utilization of transferrin-bound iron. Park RY; Sun HY; Choi MH; Bai YH; Shin SH J Microbiol; 2005 Apr; 43(2):183-90. PubMed ID: 15880095 [TBL] [Abstract][Full Text] [Related]
8. Virulence of Staphylococcus aureus grown in vitro or in vivo. Watson DL Res Vet Sci; 1982 May; 32(3):311-5. PubMed ID: 7100646 [TBL] [Abstract][Full Text] [Related]
9. On the role of Staphylococcus aureus sortase and sortase-catalyzed surface protein anchoring in murine septic arthritis. Jonsson IM; Mazmanian SK; Schneewind O; Verdrengh M; Bremell T; Tarkowski A J Infect Dis; 2002 May; 185(10):1417-24. PubMed ID: 11992276 [TBL] [Abstract][Full Text] [Related]
10. Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. Josefsson E; Hartford O; O'Brien L; Patti JM; Foster T J Infect Dis; 2001 Dec; 184(12):1572-80. PubMed ID: 11740733 [TBL] [Abstract][Full Text] [Related]
11. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Cendrowski S; MacArthur W; Hanna P Mol Microbiol; 2004 Jan; 51(2):407-17. PubMed ID: 14756782 [TBL] [Abstract][Full Text] [Related]
12. High and low virulence Staphylococcus aureus strains in a rabbit skin infection model. Meulemans L; Hermans K; Duchateau L; Haesebrouck F Vet Microbiol; 2007 Dec; 125(3-4):333-40. PubMed ID: 17644278 [TBL] [Abstract][Full Text] [Related]
13. Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus isolates from various foods in Portugal. Pereira V; Lopes C; Castro A; Silva J; Gibbs P; Teixeira P Food Microbiol; 2009 May; 26(3):278-82. PubMed ID: 19269569 [TBL] [Abstract][Full Text] [Related]
14. Alanylation of teichoic acids protects Staphylococcus aureus against Toll-like receptor 2-dependent host defense in a mouse tissue cage infection model. Kristian SA; Lauth X; Nizet V; Goetz F; Neumeister B; Peschel A; Landmann R J Infect Dis; 2003 Aug; 188(3):414-23. PubMed ID: 12870123 [TBL] [Abstract][Full Text] [Related]
15. Virulence regulation in Staphylococcus aureus: the need for in vivo analysis of virulence factor regulation. Pragman AA; Schlievert PM FEMS Immunol Med Microbiol; 2004 Oct; 42(2):147-54. PubMed ID: 15364098 [TBL] [Abstract][Full Text] [Related]
17. Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. Collins LV; Kristian SA; Weidenmaier C; Faigle M; Van Kessel KP; Van Strijp JA; Götz F; Neumeister B; Peschel A J Infect Dis; 2002 Jul; 186(2):214-9. PubMed ID: 12134257 [TBL] [Abstract][Full Text] [Related]
18. IFN-gamma plays a detrimental role in murine defense against nasal colonization of Staphylococcus aureus. Satorres SE; Alcaráz LE; Cargnelutti E; Di Genaro MS Immunol Lett; 2009 Apr; 123(2):185-8. PubMed ID: 19428568 [TBL] [Abstract][Full Text] [Related]
19. Co-production of staphylococcal enterotoxin A with toxic shock syndrome toxin-1 (TSST-1) enhances TSST-1 mediated mortality in a D-galactosamine sensitized mouse model of lethal shock. De Boer ML; Kum WW; Pang LT; Chow AW Microb Pathog; 1999 Aug; 27(2):61-70. PubMed ID: 10458917 [TBL] [Abstract][Full Text] [Related]
20. Helenalin reduces Staphylococcus aureus infection in vitro and in vivo. Boulanger D; Brouillette E; Jaspar F; Malouin F; Mainil J; Bureau F; Lekeux P Vet Microbiol; 2007 Jan; 119(2-4):330-8. PubMed ID: 17010538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]